Wastewater, which is rich with heavy elements, dyes, and pesticides, represents one of the most important environmental pollutants. Thus, it has been significant to fabricate environmentally friendly polymers with high adsorption ability for those pollutants. Herein, crosslinked chitosan (C-Cs) was prepared using isopropyl acrylamide and methylene bisacrylamide. Carbon nanoparticles (C-NPs) were also obtained by the treatment of the agricultural wastes, which was used with C-Cs to prepare C-Cs/C-NPs nanocomposite (C-Cs/C-NC). Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and transmission electron microscope (TEM) were used to investigate the prepared adsorbent. C-Cs, C-NPs, and C-Cs/C-NC were used in water treatment for the adsorption of lead ions (Pb+2) and methylene blue (MB). The adsorption process occurred by the prepared samples was investigated under different conditions, including contact time, as well as different doses and concentrations of adsorbents. The findings exhibited that the adsorption of Pb+2 and MB by C-Cs/C-NC was higher than C-Cs and C-NPs. In addition, the kinetic and isotherm models were studied, where the results showed that the adsorption of Pb+2 and MB by various adsorbents obeys pseudo-second-order and Langmuir isotherms, respectively.
In this study, bionanocomposite coating solutions were created using polyvinyl alcohol (PVA) and chitosan (Cs), with different concentrations of cinnamon essential oil in nanoemulsion (n-CEO; 0%, 5%, 10%, and 20%) and TiO2 nanoparticles (TiO2-NPs). The bionanocomposite was characterized using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy with EDX, and mechanical and barrier property assessment. Additionally, antimicrobial and antioxidant properties and total phenols were evaluated. Generally, mechanical and barrier properties were enhanced with increasing n-CEO concentrations with a favorable distribution in film matrix. Moreover, total phenols, antioxidant, and antimicrobial activities were also enhanced a broader inhibition pattern against A. flavus, gram-positive, and gram-negative bacteria. The influence of n-CEO and TiO2-NPs blended into bionanocomposite on preservation of fresh chicken breast fillets during 21 days of refrigeration was evaluated. Added n-CEO concentration, especially 20%, and TiO2-NPs enhanced antimicrobial properties and extended preservation time up to 14 days compared to uncoated samples. Furthermore, weight loss was decreased during storage of coated samples. Thus, PVA/Cs/TiO2–NPs with n-CEO bionanocomposites may be useful as a coating for chicken breast fillets to control microbial growth and reduce weight loss during cold storage.
Bagasse raw materials were filled with recycled polyvinyl chloride composites via compounding and compression molding. In this research, unmodified, soda treated, and oxidized bagasse fibers were combined in different concentrations (5%, 10%, 15%, and 20%) with pure PVC/recycled PVC (30:70 wt). The composites surfaces were examined as well as their mechanical properties, crystallization behavior, and biodegradation properties. It was found that uniformity in the distribution of the bagasse fibers in the microstructure of the polymer composites was a major factor affecting the mechanical properties. The oxidized bagasse fiber loaded composite matrix gives the best mechanical and biodegradation properties compared with the untreated and soda treated bagasse fibers. In addition to increasing modulus and tensile strength, fiber loading also reduced hardness. X‐ray diffraction investigation illustrated that introducing fiber to a p‐ PVC/r‐PVC matrix did not affect characteristic peak positions. Packaging applications can be further developed with these composite materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.