Smp24 and Smp43 are novel cationic AMPs identified from the venom of the Egyptian scorpion Scorpio maurus palmatus, having potent activity against both Gram-positive and Gram-negative bacteria as well as fungi. Here we describe cytotoxicity of these peptides towards three non-tumour cell lines (CD34 + (hematopoietic stem progenitor from cord blood), HRECs (human renal epithelial cells) and HACAT (human skin keratinocytes) and two acute leukaemia cell lines (myeloid (KG1a) and lymphoid (CCRF-CEM) leukaemia cell lines) using a combination of biochemical and imaging techniques. Smp24 and Smp43 (4-256 µg/mL) decreased the cell viability (as measured by intracellular ATP) of all cells tested, although keratinocytes were markedly less sensitive. Cell membrane leakage as evidenced by the release of lactate dehydrogenase was evident throughout and was confirmed by scanning electron microscope studies.
Within the last decade, several peptides have been identified according to their ability to inhibit the growth of microbial pathogens. These antimicrobial peptides (AMPs) are a part of the innate immune system of all living organisms. Many studies on their effects on prokaryotic microorganisms have been reported; some of these peptides have cytotoxic properties although the molecular mechanisms underlying their activity on eukaryotic cells remain poorly understood. Smp24 and Smp43 are novel cationic AMPs which were identified from the venom of the Egyptian scorpion Scorpio maurus palmatus. Smp24 and Smp43 showed potent activity against both Gram-positive and Gram-negative bacteria as well as fungi. Here we describe cytotoxicity of these peptides towards two acute leukaemia cell lines (myeloid (KG1-a) and lymphoid (CCRF-CEM) leukaemia cell lines) and three non-tumour cell lines CD34+ (hematopoietic stem progenitor from cord blood), HRECs (human renal epithelial cells) and HaCaT (human skin keratinocytes). Smp24 and Smp43 (4–256 µg/ml) decreased the viability of all cell lines, although HaCaT cells were markedly less sensitive. With the exception HaCaT cells, the caspase-1 gene was uniquely up-regulated in all cell lines studied. However, all cell lines showed an increase in downstream interleukin-1β (IL-1β) expression. Transmission electron microscope studies revealed the formation of cell membrane blebs and the appearance of autolysosomes and lipid droplets in all cell lines; KG1-a leukemia cells also showed the unique appearance of glycogen deposits. Our results reveal a novel mechanism of action for scorpion venom AMPs, activating a cascade of events leading to cell death through a programmed pyroptotic mechanism.
Clam Ruditapes decussates was used as a biomonitoring organism to measure the potential impact of pollution. The present study investigated histological alterations of R. decussates following a long-term exposure to a sublethal-level of pesticides Reldan and Roundup. The clams were taken to the laboratory and kept for days to adjust to a continuous closed flow system with quality water control. After the adjustment period, clams were exposed either to sublethal concentrations of Reldan (0.6 µl L − 1 ) or Roundup (1.1 µl L − 1 ) for 90 days. Clams were taken to determine the histological damage at 30, 60 and 90 days. Most histological alterations were highly localized in the glandular cells of the gills, mantle tissues and digestive gland; secretions of glandular cells were found to be increased by increasing the time of exposure. Histopathological results showed the activation of resistance mechanisms that allowed the clams to survive under sublethal stresses. Thus, histological changes on localized tissues were sensitive and they have positive correlation to the time of exposure to the pesticides, suggesting that they may serve as biomarkers for Reldan and Roundup exposures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.