Evasion of the immune system is the tumor’s key strategy for its maintenance and progression. Thus, targeting the tumor microenvironment (TME) is considered one of the most promising approaches for fighting cancer, where immune cells within the TME play a vital role in immune surveillance and cancer elimination. FasL is one of the most important death ligands expressed by tumor-infiltrating lymphocytes (TILs) and plays a vital role in eliminating Fas-expressing cancer cells via Fas/FasL pathway-induced apoptosis. However, tumor cells can express elevated levels of FasL inducing apoptosis to TILs. Fas/FasL expression is linked to the maintenance of cancer stem cells (CSCs) within the TME, contributing to tumor aggressiveness, metastasis, recurrence, and chemoresistance. This study is considered the first study designed to block the overexpressed FasL on the tumor cells within TME mimicking tissue culture system using rFas molecules and supplementing the Fas enriched tissue culture system with blocked Fas - peripheral blood mononuclear cells PBMCs (using anti-Fas mAb) to protect them from tumor counterattack and augment their ability to induce tumor cell apoptosis and stemness inhibition. A significantly increased level of apoptosis and decreased expression of CD 44 (CSCs marker) was observed within the east tumor tissue culture system enriched with Fas molecules and anti-Fas treated PBMCs and the one enriched with Fas molecules only compared to the breast tumor tissues cultured alone (p < 0.001). Accordingly, we can consider the current study as a promising proposed immunotherapeutic strategy for breast cancer.
Early-stage cancer recognition could improve awareness and treatment strategies. Twenty four breast cancer affected individuals had their DNA isolated from malignant tissues and from blood. DNA was then amplifi ed by RAPD with six different ten-mer primers. RAPD-PCR yields were electrophoresed on a 1 .5% agarose gel and visualized using ethidium-bromide staining. Only two out of the selected RAPD data have exhibited distinguishable polymorphic markers between cancerous and normal tissues. Enzyme-Linked Immunosorbent Assay (ELISA) was used for the determination plasma immunoglobulins (IgG, IgA and IgM) in patient samples preoperatively, postoperatively and after six cycles of chemotherapy treatment. Thirty age-matched normal females were examined for IgA, IgG and IgM by ELISA. Specifi cally, results showed that normal females had mean IgG, IgA and IgM concentrations of 9.80mg/ml, 2.56mg/ml, and 1.75mg/ml respectively while malignant patients preoperatively had mean concentration of 9.89mg/ml, 2.92mg/ml and 2.02mg/ml (P<0.727, P<0.001 and P<0.001) respectively. Moreover, analysis of the data revealed that patient plasma samples concentrations of IgG, IgA and IgM postoperatively were 7.9mg/ml, 1.96mg/ml and 1.36mg/ml (P<0.001) respectively whereas, their concentrations improved to normal levels when chemotherapy was ceased. Bovine Serum Albumin (BSA) was chosen as a goal to minimize cross linking and investigate differences in immunoglobulin concentrations. On the other hand, the mean levels of IgA and IgM in patient plasma samples preoperatively after refi ning from antibody binding process that interfere with BSA were measured to be 2.53mg/ml and 1.72mg/ml respectively demonstrating that there were no statistical signifi cance of the difference between IgA and IgM concentrations in malignant patients and healthy females. Hence, this study aimed to assess the prevalence of cross reactivity with BSA that might be used as a potent marker for patients with breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.