Background: Digital images are captured using sensors during the data acquisition phase, where they are often contaminated by noise (an undesired random signal). Such noise can also be produced during transmission or by poor-quality lossy image compression. Reducing the noise and enhancing the images are considered the central process to all other digital image processing tasks. The improvement in the performance of image denoising methods would contribute greatly on the results of other image processing techniques. Patch-based denoising methods recently have merged as the state-of-the-art denoising approaches for various additive noise levels. In this work, the use of the state-of-the-art patch-based denoising methods for additive noise reduction is investigated. Various types of image datasets are addressed to conduct this study. Methods: We first explain the type of noise in digital images and discuss various image denoising approaches, with a focus on patch-based denoising methods. Then, we experimentally evaluate both quantitatively and qualitatively the patch-based denoising methods. The patch-based image denoising methods are analyzed in terms of quality and computational time. Results: Despite the sophistication of patch-based image denoising approaches, most patch-based image denoising methods outperform the rest. Fast patch similarity measurements produce fast patch-based image denoising methods. Conclusion: Patch-based image denoising approaches can effectively reduce noise and enhance images. Patch-based image denoising approach is the state-of-the-art image denoising approach.Keywords: Patch-based image denoising, Bilateral filter, Non-local means filtering, Probabilistic patch-based filtering, Dictionary learning filtering, K-SVD, Gaussian patch-PCA filtering, BM3D Review IntroductionThe noise level in digital images may vary from being almost imperceptible to being very noticeable. Image denoising techniques attempt to produce a new image that has less noise, i.e., closer to the original noise-free image. Image denoising techniques can be grouped into two main approaches: pixel-based image filtering and patch-based *Correspondence: elsakka@csd.uwo.ca 2 Department of Computer Science, Middlesex College, Western University, 1151 Richmond Street, N6A 5B7, London, Ontario, Canada Full list of author information is available at the end of the article image filtering. A pixel-based image filtering scheme is mainly a proximity operation used for manipulating one pixel at a time (pixel-wise) based on its spatial neighboring pixels located within a kernel. On the other hand, in patch-based image filtering, the noisy image is divided into patches, or "blocks, " which are then manipulated separately in order to provide an estimate of the true pixel values (patch-wise) based on similar patches located within a search window. This approach utilizes the redundancy and the similarity among the various parts of the input image. Figure 1 shows the mechanism of the two approaches.
Image denoising is considered a salient pre-processing step in sophisticated imaging applications. Over the decades, numerous studies have been conducted in denoising. Recently proposed Block matching and 3D (BM3D) filtering added a new dimension to the study of denoising. BM3D is the current state-of-the-art of denoising and is capable of achieving better denoising as compared to any other existing method. However, there is room to improve BM3D to achieve high-quality denoising. In this study, to improve BM3D, we first attempted to improve the Wiener filter (the core of BM3D) by maximizing the structural similarity (SSIM) between the true and the estimated image, instead of minimizing the mean square error (MSE) between them. Moreover, for the DC-only BM3D profile, we introduced a 3D zigzag thresholding. Experimental results demonstrate that regardless of the type of the image, our proposed method achieves better denoising performance than that of BM3D.
Accurate delineation of object borders is highly desirable in echocardiography, especially at the left ventricle. Among other modelbased techniques, active contours (or snakes) provide a unique and powerful approach to image analysis. In this work, we propose the use of a new external energy for a gradient vector flow (GVF) snake, being the optical flow of a moving sequence (modeling the mechanical movement of the heart). This external energy can provide additional information to the active contour model garnering adequate results for moving sequences. An automatic iterative primitive shape prior was also applied in order to further improve the results of a GVF snake, when dealing with especially noisy echocardiographic images. Results were compared with expert-defined segmentations yielding acceptable sensitivity, precision rate and overlap ratio performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.