The proliferation of social networking services has resulted in a rapid growth of their user base, spanning across the world. The collective information generated from these online platforms is overwhelming, in terms of both the amount of content produced every moment and the diversity of topics discussed. The real-time nature of the information produced by users has prompted researchers to analyse this content, in order to gain timely insight into the current state of affairs. Specifically, the microblogging service Twitter has been a recent focus of researchers to gather information on events occurring in real time. This article presents a survey of a wide variety of event detection methods applied to streaming Twitter data, classifying them according to shared common traits, and then discusses different aspects of the subtasks and challenges involved in event detection. We believe this survey will act as a guide and starting point for aspiring researchers to gain a structured view on state-of-the-art real-time event detection and spur further research in this direction.
Image denoising is considered a salient pre-processing step in sophisticated imaging applications. Over the decades, numerous studies have been conducted in denoising. Recently proposed Block matching and 3D (BM3D) filtering added a new dimension to the study of denoising. BM3D is the current state-of-the-art of denoising and is capable of achieving better denoising as compared to any other existing method. However, there is room to improve BM3D to achieve high-quality denoising. In this study, to improve BM3D, we first attempted to improve the Wiener filter (the core of BM3D) by maximizing the structural similarity (SSIM) between the true and the estimated image, instead of minimizing the mean square error (MSE) between them. Moreover, for the DC-only BM3D profile, we introduced a 3D zigzag thresholding. Experimental results demonstrate that regardless of the type of the image, our proposed method achieves better denoising performance than that of BM3D.
Research in event detection from the Twitter streaming data has been gaining momentum in the last couple of years. Although such data is noisy and often contains misleading information, Twitter can be a rich source of information if harnessed properly. In this paper, we propose a scalable event detection system, TwitterNews, to detect and track newsworthy events in real time from Twitter. TwitterNews provides a novel approach, by combining random indexing based term vector model with locality sensitive hashing, that aids in performing incremental clustering of tweets related to various events within a fixed time. TwitterNews also incorporates an effective strategy to deal with the cluster fragmentation issue prevalent in incremental clustering. The set of candidate events generated by TwitterNews are then filtered, to report the newsworthy events along with an automatically selected representative tweet from each event cluster. Finally, we evaluate the effectiveness of TwitterNews, in terms of the recall and the precision, using a publicly available corpus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.