The strategic and monetary value of the civil infrastructure worldwide necessitates the development of structural health monitoring (SHM) systems that can accurately monitor structural response due to real-time loading conditions, detect damage in the structure, and report the location and nature of this damage. In the last decade, extensive research has been carried out for developing vibration-based damage detection algorithms that can relate structural dynamics changes to damage occurrence in a structure. In the mean time, the wavelet transform (WT), a signal processing technique based on a windowing approach of dilated ‘scaled’ and shifted wavelets, is being applied to a broad range of engineering applications. Wavelet transform has proven its ability to overcome many of the limitations of the widely used Fourier transform (FT); hence, it has gained popularity as an efficient means of signal processing in SHM systems. This increasing interest in WT for SHM in diverse applications motivates the authors to write an exposition on the current WT technologies. This article presents a utilitarian view of WT and its technologies. By reviewing the state-of-the-art in WT for SHM, the article discusses specific needs of SHM addressed by WT, classifies WT for damage detection into various fields, and describes features unique to WT that lends itself to SHM. The ultimate intent of this article is to provide the readers with a background on the various aspects of WT that might appeal to their need and sector of interest in SHM. Additionally, the comprehensive literature review that comprises this study will provide the interested reader a focused search to investigate using wavelets in SHM.
Carbon fiber reinforced polymer (CFRP) laminates exhibit limited fracture toughness due to characteristic interlaminar fiber-matrix cracking and delamination. In this article, we demonstrate that the fracture toughness of CFRP laminates can be improved by the addition of multi-walled carbon nanotubes (MWCNTs). Experimental investigations and numerical modeling were performed to determine the effects of using MWCNTs in CFRP laminates. The CFRP specimens were produced using an epoxy nanocomposite matrix reinforced with carboxyl functionalized multi-walled carbon nanotubes (COOH-MWCNTs). Four MWCNTs contents of 0.0%, 0.5%, 1.0%, and 1.5% per weight of the epoxy resin/hardener mixture were examined. Double cantilever beam (DCB) tests were performed to determine the mode I interlaminar fracture toughness of the unidirectional CFRP composites. This composite material property was quantified using the critical energy release rate, GIC. The experimental results show a 25%, 20%, and 17% increase in the maximum interlaminar fracture toughness of the CFRP composites with the addition of 0.5, 1.0, and 1.5 wt% MWCNTs, respectively. Microstructural investigations using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) verify that chemical reactions took place between the COOH-MWCNTs and the epoxy resin, supporting the improvements experimentally observed in the interlaminar fracture toughness
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.