Vertically aligned carbon nanotube (VACNT) array growth is an established process where high aspect ratio carbon nanotubes (CNTs) are produced. This work demonstrates one-step approach to fabricate bulk polymer nanocomposites using CNT array fragments'. Here, 4.5 mm long CNTs were collected post VACNTs synthesis. Next, CNT array fragments were coated with pyrolytic carbon (PyC) and infused with polydimethylsiloxane (PDMS) matrix to create porous CNT/PDMS nanocomposite with a CNT weight fraction of 20%. Achieving similar weight fraction with super long bundled CNTs using dispersion techniques is extremely difficult. The compression and dynamic mechanical behaviors and piezoresistive response of the PDMS filled nanocomposite were assessed. The results revealed the potential of the synthesized structure to serve as fatigue-resistant pressure sensors with high damping and self-sensing capabilities. The proposed fabrication technique is versatile, as it can work with thermosetting and thermoplastic polymers in addition to allowing for mass production of PDMS filled nanocomposites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.