Road intersections data have been used across different geospatial applications and analysis. The road network datasets dating from pre-GIS years are only available in the form of historical printed maps. Before they can be analyzed by a GIS software, they need to be scanned and transformed into the usable vector-based format. Due to the great bulk of scanned historical maps, automated methods of transforming them into digital datasets need to be employed. Frequently, this process is based on computer vision algorithms. However, low conversion accuracy for low quality and visually complex maps and setting optimal parameters are the two challenges of using those algorithms. In this paper, we employed the standard paradigm of using deep convolutional neural network for object detection task named regionbased CNN for automatically identifying road intersections in scanned historical USGS maps of several US. cities. We have found that the algorithm showed higher conversion accuracy for the double line cartographic representations of the road maps than the single line ones. Also, compared to the majority of traditional computer vision algorithms RCNN provides more accurate extraction. Finally, the results show that the amount of errors in the detection outputs is sensitive to complexity and blurriness of the maps as well as the number of distinct RGB combinations within them.
Morphologies of urban patterns display multifractal scaling. However, what data should be used to represent an urban pattern and its scaling? Here, we calculated Renyi's generalized dimensions (RGD) spectra using data corresponding to different urban modalities including urban land cover, urban impervious surface, population density, and street intersection points. All
Machine learning (ML) is becoming an ever more important tool in hydrologic modeling. Many studies have shown the higher prediction accuracy of the ML models over traditional process-based ones. However, there is another advantage of ML which is its lower computer time of execution. This is important for the applications such as hydraulic soil erosion estimation over a large area and at a finer spatial scale. Using traditional models like Rangeland Hydrology and Erosion Model (RHEM) requires too much computation time and resources. In this study, we designed an Artificial Neural Network that is able to recreate the RHEM outputs (runoff, soil loss, and sediment yield) with high accuracy (Nash-Sutcliffe Efficiency $\approx$ 1.0) and a very low computational time (13 billion times faster on average). We ran the RHEM for more than a million synthetic scenarios and train the Emulator with them. We also, fine-tuned the trained Emulator with the RHEM runs of the real-world scenarios (more than 32,000) so the Emulator remains comprehensive while it works specifically accurately for the real-world cases. We also showed that the sensitivity of the Emulator to the input variables is similar to the RHEM and it can effectively capture the changes in the RHEM outputs when an input variable varies. Finally, the dynamic prediction behavior of the Emulator is statistically similar to the RHEM with a 95\% confidence interval.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.