SUMMARY The polyomavirus JC (JCV) causes the demyelinating disease progressive multifocal leukoencephalopathy (PML). Infection by JCV is very common in childhood after which the virus enters a latent state, which is poorly understood. Under conditions of severe immunosuppression, especially AIDS, JCV may reactivate to cause PML. Expression of JC viral proteins is regulated by the JCV non-coding control region (NCCR), which contains an NF-κB binding site previously shown to activate transcription. We now report that C/EBPβ inhibits basal and NF-κB-stimulated JCV transcription via the same site. Gel shift analysis showed C/EBPβ bound to this region in vitro and ChIP assays confirmed this binding in vivo. Further, a ternary complex of NF-κB/p65, C/EBPβ-LIP and JCV DNA could be detected in co-immunoprecipitation experiments. Mutagenesis analysis of the JCV NCCR indicated p65 and C/EBPβ-LIP bound to adjacent but distinct sites and that both sites regulate basal and p65-stimulated transcription. Thus C/EBPβ negatively regulates JCV, which together with NF-κB activation, may control the balance between JCV latency and activation leading to PML. This balance may be regulated by proinflammatory cytokines in the brain.
The late region of the human neurotropic JC virus encodes a 71 amino acid protein, named Agnoprotein, whose biological function remains elusive. Here we demonstrate that in the absence of other viral proteins, expression of Agnoprotein can inhibit cell growth by deregulating cell progression through the cell cycle stages. Cells with constitutive expression of Agnoprotein were largely accumulated at the G2/M stage and that decline in the activity of cyclins A and B is observed in these cells. Agnoprotein showed the ability to augment p21 promoter activity in transient transfection assay and a noticeable increase in the level of p21 is detected in cells continuously expressing Agnoprotein. Results from binding studies revealed the interaction of Agnoprotein with p53 through the N-terminal of the Agnoprotein spanning residues 1 -36. Co-expression of p53 and Agnoprotein further stimulated transcription of the p21 promoter. Thus, the interaction of p53 and Agnoprotein can lead to a higher level of p21 expression and suppression of cell cycle progression during the cell cycle.
Polyomaviruses are a growing family of small DNA viruses with a narrow tropism for both the host species and the cell type in which they productively replicate. Species host range may be constrained by requirements for precise molecular interactions between the viral T antigen, host replication proteins, including DNA polymerase, and the viral origin of replication, which are required for viral DNA replication. Cell type specificity involves, at least in part, transcription factors that are necessary for viral gene expression and restricted in their tissue distribution. In the case of the human polyomaviruses, BK virus (BKV) replication occurs in the tubular epithelial cells of the kidney, causing nephropathy in kidney allograft recipients, while JC virus (JCV) replication occurs in the glial cells of the central nervous system, where it causes progressive multifocal leukoencephalopathy. Three new human polyomaviruses have recently been discovered: MCV was found in Merkel cell carcinoma samples, while Karolinska Institute Virus and Washington University Virus were isolated from the respiratory tract. We discuss control mechanisms for gene expression in primate polyomaviruses, including simian vacuolating virus 40, BKV, and JCV. These mechanisms include not only modulation of promoter activities by transcription factor binding but also enhancer rearrangements, restriction of DNA methylation, alternate early mRNA splicing, cis-acting elements in the late mRNA leader sequence, and the production of viral microRNA.Polyomaviruses comprise a family of small nonenveloped DNA tumor viruses which have small, circular, doublestranded DNA genomes, have been isolated from many species of mammals and birds, and are characterized by a very limited host range with respect to the species that they can productively infect (48). We will focus mainly on three primate viruses, simian vacuolating virus 40 (SV40), BK virus (BKV), and JC virus (JCV), not only because they have taught us important lessons about eukaryotic molecular biology but also because BKV and JCV cause important human diseases. SV40 was discovered almost 50 years ago (115) and was the first primate polyomavirus to be described. SV40 differs significantly from the previously discovered mouse polyoma virus (111) in that it does not possess a middle T antigen in the early region and it expresses an accessory regulatory protein, agnoprotein, which is encoded in the late region. The species of origin of SV40 is the rhesus macaque, and the virus was discovered as a contaminant in early batches of polio vaccine. While the polio vaccinations at that time likely infected many people, the prevalence of SV40 infections in humans today has been debated (36,122). In 1971, two bona fide human polyomaviruses were discovered. BKV, also known as polyomavirus BK, was first isolated by Gardner et al. (37) by culture in Vero cells from the urine of a patient receiving immunosuppressive therapy following kidney transplantation. BKV is widespread throughout the human population around...
Many eukaryotic and viral regulatory proteins are known to undergo posttranslational modifications including phosphorylation, which plays a critical role in many aspects of cell function. Previous studies from our and other laboratories indicated that the JC virus (JCV) late regulatory protein, agnoprotein, plays an important role in the JCV life cycle. Agnoprotein contains several potential phosphorylation sites, including Ser7, Ser11, and Thr21, which are potential targets for the serine/threonine-specific protein kinase C (PKC). In this study, we investigated the functional significance of these phosphorylation sites for the activity of agnoprotein. In vitro and in vivo kinase assays demonstrated that agnoprotein is a target for phosphorylation by PKC. In addition, each of the PKC phosphorylation sites was mutated to Ala singly and in combination, and the effects of these mutations on the JCV life cycle were analyzed. Although the expression of each mutant agnoprotein was detectable during the infection cycle, virus containing each of these mutations failed to propagate. These results contrast with those obtained with an agnoprotein start codon point (Pt) mutant where agnoprotein expression was completely inhibited. The Pt mutant was viable but replicates less efficiently than the wild type (WT). Moreover, conservative substitutions at PKC phosphorylation sites (Ser7, Ser11, and Thr21 to Asp) resulted in a viable virus, which further demonstrate the importance of these sites on agnoprotein function. Further analysis of the mutants by viral release assay and electron microscopy studies revealed that viral particles were efficiently released from infected cells and morphologically indistinguishable from those of WT but were deficient in DNA content. This may account for the defective propagation of the mutants. These results imply that phosphorylated forms of agnoprotein may have essential functions in the viral life cycle and serve as potential targets for therapeutic interventions to limit JCV propagation and JCV-induced diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.