Prodigiosins, a family of natural red pigments characterized by a common pyrrolylpyrromethane skeleton, are produced by various bacteria that first characterized from Serratia marcescens. This pigment is a promising drug owing to its reported characteristics of having antifungal, immunosuppressive and anti-proliferative activity. From an industrial point of view to obtain optimal conditions to enhance the growth of Serratia marcescens and the pigment production is necessity. In present study, the production condition, physicochemical and functional characteristics, structure, genetic and gene expression, apoptosis and toxigenic effects of prodigiosin will be discussed in-order to contribute to the world of Serratia marcescens with respect to its prodigiosin production property
Rhamnolipid has been known as biosurfactant which is produced by Pseudomonas aeruginosa in fermentation process. Several carbon sources such as ethanol, glucose, vegetable oil and hydrocarbon have been used to produce rhamnolipid. In this study, we are trying to use molasses which is a waste product from sugar industry as carbon source to produce rhamnolipid. The bacterium which was previously isolated from Iranian oil over years Glycolipid production by isolated bacterium using sugar beet molasses as a carbon and energy source was investigated. Result from the study showed that the growth of the bacteria using molasses as carbon sources is growth-associated. The specific production rate of rhamnolipid with 2%, 4%, 6%, 8% and 10% of molasses are 0. 00065, 4.556, 8.94, 8.85, and 9.09 respectively. The yield of rhamnolipid per biomass with 2%, 4%, 6%, 8% and 10% molasses are 0.003, 0.009, 0.053, 0.041 and 0.213 respectively. The production of rhamnolipid (0.0531 g. rhamnolipid/g biomass) is higher compare to the culture grown in aerobic condition (0.04 g. rhamnolipid/g biomass). These studies indicate that renewable, relatively inexpensive and easily available resources can be used for important biotechnological processes.
ABSTARCT: Microbially produced lipopeptide have been isolated and studied for microbial enhanced oil recovery.About 60 gram positive bacteria isolated from soil contaminated with crude oil, near the crude oil storage tank in Tehran Refinery, Tehran, Iran. However, most of these studies have produced lipopeptide by one of the pure-culture microbes isolated in a laboratory. Among the isolates, heamolytic tests revealed two biosurfactant producers. The isolated strains were designated as C2, E1. By using morphological, biochemical and molecular biology tests (16 SrRNA), the strains identified as Bacillus licheniformis and Bacillus subtitlis, respectively. Emulsification activity and measurement of surface tension indicated that, the isolates were high producers of biosurfactant. The product of C2 and E1 is mainly lipopeptide. This product reduce surface tension from 65 to 30 mN/m. Emulsified activity of crude oil was 92% for C2 and 90 % in case of E1. This is the first report of indigenous Bacillus licheniformis and Bacillus subtilis from a soil contaminated with oil in an Iranian refinery with ability to produce biosurfactant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.