<span lang="EN-US">Iris recognition become one of the most accurate and reliable steadfast human biometric recognition system of the decad. This paper presents an accurate framework for iris recognition system using hybrid algorithm in preprocess and feature extraction section. The proposed model for iris recognition with significant feature extraction was divided into three main levels. First level is having pre-processing steps which are necessary for the desired tasks. Our model deploys on three types of datasets such as UBIRIS, CASIA, and MMU and gets optimal results for performing activity. At last, perform matching process with decision based classifier for iris recognition with acceptance or rejection rates. Experimental based results provide for analysis according to the false receipt rate and false refusal amount. In the third level, the error rate will be checked along with some statistical measures for final optimal results. Constructed on the outcome the planned method provided the most efficient effect as compared to the rest of the approach.</span>
<span>The obtainable fourth-generation technology (4G) networks have been extensively used in the cloud application and are constantly evolving to match the needs of the future cloud applications. The fifth generation (5G) networks are probable to immense expand today's cloud that can boost communication operations, cloud security, and network challenges and drive the cloud future to the edge and internet of things (IoT) applications. The existing cloud solutions are facing a number of challenges such as large number of connection of nodes, security, and new standards. This paper reviews the current research state-of-the-art of 5G cloud, key-enabling technologies, and current research trends and challenges in 5G along with cloud application.</span>
One of the classic systems in dynamics and control is the inverted pendulum, which is known as one of the topics in control engineering due to its properties such as nonlinearity and inherent instability. Different approaches are available to facilitate and automate the design of fuzzy control rules and their associated membership functions. Recently, different approaches have been developed to find the optimal fuzzy rule base system using genetic algorithm. The purpose of the proposed method is to set fuzzy rules and their membership function and the length of the learning process based on the use of a genetic algorithm. The results of the proposed method show that applying the integration of a genetic algorithm along with Mamdani fuzzy system can provide a suitable fuzzy controller to solve the problem of inverse pendulum control. The proposed method shows higher equilibrium speed and equilibrium quality compared to static fuzzy controllers without optimization. Using a fuzzy system in a dynamic inverted pendulum environment has better results compared to definite systems, and in addition, the optimization of the control parameters increases the quality of this model even beyond the simple case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.