While various phase-field models have recently appeared for two-phase fluids with different densities, only some are known to be thermodynamically consistent, and practical stable schemes for their numerical simulation are lacking. In this paper, we derive a new form of thermodynamically-consistent quasi-incompressible diffuse-interface Navier-Stokes Cahn-Hilliard model for a two-phase flow of incompressible fluids with different densities. The derivation is based on mixture theory by invoking the second law of thermodynamics and Coleman-Noll procedure. We also demonstrate that our model and some of the existing models are equivalent and we provide a unification between them. In addition, we develop a linear and energy-stable time-integration scheme for the derived model. Such a linearly-implicit scheme is nontrivial, because it has to suitably deal with all nonlinear terms, in particular those involving the density. Our proposed scheme is the first linear method for quasi-incompressible two-phase flows with nonsolenoidal velocity that satisfies discrete energy dissipation independent of the time-step size, provided that the mixture density remains positive. The scheme also preserves mass. Numerical experiments verify the suitability of the scheme for two-phase flow applications with high density ratios using large time steps by considering the coalescence and break-up dynamics of droplets including pinching due to gravity.
We consider a computational model for binary-fluid–solid interaction based on an arbitrary Lagrangian–Eulerian formulation of the Navier–Stokes–Korteweg equations, and we assess the predictive capabilities of this model. Due to the presence of two distinct fluid components, the stress tensor in the binary-fluid exhibits a capillary component in addition to the pressure and viscous-stress components. The distinct fluid–solid surface energies of the fluid components moreover lead to preferential wetting at the solid substrate. Compared to conventional FSI problems, the dynamic condition coupling the binary-fluid and solid subsystems incorporates an additional term associated with the binary-fluid–solid surface tension. We consider a formulation of the Navier–Stokes–Korteweg equations in which the free energy associated with the standard van-der Waals equation of state is replaced by a polynomial double-well function to provide better control over the diffuse-interface thickness and the surface tension. For the solid subsystem, we regard a standard hyperelastic model. We explore the main properties of the binary-fluid–solid interaction problem and establish a dissipation relation for the aggregated system. In addition, we present numerical results based on a fully monolithic approach to the complete nonlinear system. To validate the computational model, we consider the elasto-capillary interaction of a sessile droplet on a soft solid substrate and compare the numerical results with a corresponding solid model with fabricated fluid loads and with experimental data.
In this paper we consider a multiscale phase-field model for capillarity-driven flows in porous media. The presented model constitutes a reduction of the conventional Navier-Stokes-Cahn-Hilliard phase-field model, valid in situations where interest is restricted to dynamical and equilibrium behavior in an aggregated sense, rather than a precise description of microscale flow phenomena. The model is based on averaging of the equation of motion, thereby yielding a significant reduction in the complexity of the underlying Navier-Stokes-Cahn-Hilliard equations, while retaining its macroscopic dynamical and equilibrium properties. Numerical results are presented for the representative 2-dimensional capillary-rise problem pertaining to two closely spaced vertical plates with both identical and disparate wetting properties.Comparison with analytical solutions for these test cases corroborates the accuracy of the presented multiscale model. In addition, we present results for a capillary-rise problem with a non-trivial geometry corresponding to a porous medium.
published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.