The aim of this research was to study the pyrolysis oil production from Palm Oil Grade III (POG-III) and popular wood sawdust crude oil. Today, worldwide studies have been undertaken on the biomass usage and co-conversion of biomass and coal to seek out alternative fuels for supplying energy in an environmental friendly way. Substitute fuels have become more and more vital due to descending petroleum reserves, increasing economic circumstances and awareness of the increased environmental penalties of emissions from petroleumfuelled engines. In this study, biodiesel fuel was manufactured by the nanocatalytic to elucidate their thermal behaviour under pyrolysis conditions and to assess major decomposition products in terms of their yields. Transesterification of Palm Oil Grade III (POG-III) at 80°C temperature by using nano Co as nanocatalyst. The prepared biodiesel was characterized by FT-IR and GC-MS. Results revealed the presence of esters, alkanes, alkenes, saturated and unsaturated hydrocarbons with carbon chain in the range C 9 -C 27 . Prepared biodiesel is cost effective and highly efficient. Besides Palm oil popular wood sawdust crude oil was also used. All products were obtained at low temperature and at low atmospheric pressure.
The annual growth rate of pharmaceutical industry in Pakistan is 10% and is continuously expanding to fulfill the increasing demand of the rapidly growing population. But inability of the pharmaceutical sector to comply with the environmental standards leads to the introduction of large quantities of various pollutants in the natural environment which presents serious ecological challenges. In this study, effluent wastewater samples from 14 manufacturing units of the pharmaceutical industries of the National Industrial Zone, Rawat, Pakistan, were collected and characterized for physicochemical parameters including color, odor, pH, electric conductivity, temperature, total dissolved solids, total suspended solids, salinity, dissolved oxygen (DO), chemical oxygen demand (COD), nitrates, sulfates and phosphates according to the standard methods. The detection and quantification of diclofenac (DCF)—one of the commonly prescribed drugs in Pakistan—were carried out in the pharmaceutical wastewater samples (PWWSs) using HPLC-PAD. Exceptionally high concentration of the diclofenac was detected in the industrial disposal of MB-12 (311,495 µg L−1). PWWSs were analyzed using chemometric techniques including principal factor analysis (PFA) and cluster analysis (CA). PFA explained almost 81.48% of the total variance by the newly extracted four components and complemented the strong Pearson’s correlation coefficient (r) of DCF concentrations to that of the levels of COD, r = 0.752, and DO, r = − 0.609, in PWWSs. Six clusters were generated during similar wastewater characteristics-based CA dendrogram, in which reverse osmosis-treated PWWSs were observed to cluster with the untreated PWWSs, suggesting the need to adopt an advance and better wastewater treatment methods by the pharmaceutical industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.