Objectives: Nitric oxide (NO) is a free radical that plays important roles in variety of physiological aspects of the female reproductive system. Pathophysiological findings revealed a potential role of the endothelial isoform of nitric oxide synthase (eNOS) enzyme in female reproductive disorders specifically in the endometrium. This study investigates the expression of eNOS in the endometrial tissue to study the potential role of this enzyme and its NO production in infertility of women with uterine myomas. Materials and Methods: A total of 20 endometrial tissues were obtained, 10 infertile women with uterine fibroids and 10from normal and fertile women, 7 to 9 days after LH surge. Following fixation with paraformaldhyde, frozen sections of samples were prepared for semi-quantitative immunohistochemical evaluation using monoclonal anti-human eNOS antibody. Hematoxylin and eosin staining was used for histological dating of the samples Results: Localization of eNOS was seen in glandular and luminal epithelium, vascular endothelium and stroma in both fertile women and infertile women with uterine fibroids. Despite the differences in immunoreactivity of luminal epithelium, vascular endothelium and stroma in both groups, higher levels of eNOS in glandular epithelium was statistically significant in women with uterine fibroids compared to the control group. Conclusions: The findings suggest that over-expression of eNOS in glandular epithelium may affect the preparation stage of endometrium for fertility in women with uterine myomas.
Background Obesity is regarded a global public health crisis. It has been implicated in a variety of health problems, but when it comes to male fertility, how and to what extent obesity affects it are poorly understood. Accordingly, semen samples from 32 individuals with obesity (body mass index (BMI) ≥ 30 kg/m2) and 32 individuals with normal weight (BMI: 18.5-25 kg/m2) were obtained. Here, for the first time, we examined the association between obesity, relative sperm telomere length (STL) and autophagy-related mRNA levels such as Beclin1, AMPKa1, ULK1, BAX, and BCL2. Each group was also evaluated for conventional semen parameters, sperm apoptotic changes, DNA fragmentation index (DFI), sperm chromatin maturation, and reactive oxygen species (ROS) levels. Results Based on our findings, there was a marked reduction in relative STL in individuals with obesity as compared to the normal-weight group. We also found a significant negative correlation between relative STL and age, BMI, DFI, percentage of sperm with immature chromatin, and intracellular ROS levels in patients with obesity. In the normal-weight group, relative STL was only negatively correlated with DFI and intracellular ROS levels. Regarding mRNA expression, there was considerable upregulation of Beclin1, ULK1, and BCL2 in the group with obesity compared to the normal-weight group. Obesity was also found to be associated with a considerable decline in semen volume, total sperm count, progressive motility, and viability in comparison to normal-weight individuals. Furthermore, obesity was associated with considerably higher percentages of DFI, sperm with immature chromatin, late-stage apoptosis, and elevated ROS levels. Conclusion According to our findings, obesity is associated with sperm telomere shortening and aberrant autophagy-related mRNA expression. It should be emphasized that telomere shortening in sperm may be an indirect consequence of obesity due to the oxidative stress associated with the condition. Nevertheless, further investigation is required for a more comprehensive understanding.
Background: Chemotherapeutic agents such as cyclophosphamide and busulfan have been shown to have a negative impact on the spermatogenesis process. Based on this fact, the objective of this study was to investigate the effects of edaravone on spermatogenesis in busulfan-induced mice. Methods: Forty adult male mice were equally divided into the four groups: 1) control, 2) edaravone, 3) busulfan, and 4) busulfan + edaravone. Then, the sperm parameters, histopathological examinations, and serum levels of testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) were also assessed. Caspase-3, Beclin-1, and ATG-7 mRNA levels were also determined using real-time PCR. Results: Our results revealed that treatment of mice with edaravone in busulfan-induced azoospermia significantly improves sperm parameters, including total count, morphology, and viability (p<0.05). Furthermore, edaravone administration led to a significant increase in serum testosterone (p<0.0001) and FSH (p<0.001) levels, as well as testis weight (p<0.05) and volume (p<0.01). Edaravone also prevented a decrease in the number of testicular cells including spermatogonia (p<0.0001), primary spermatocytes (p<0.001), round spermatids (p<0.0001), Sertoli (p<0.01), and Leydig cells (p<0.0001) in busulfan-treated mice. Additionally, in busulfan-induced azoospermia, edaravone significantly reduced the percentage of sperm with immature chromatin (p<0.0001). Following treatment with edaravone, a decrease in reactive oxygen species (ROS) and an increase in glutathione (GSH) production were noted compared to busulfan-treated mice. Furthermore, caspase-3 (p<0.05), Beclin-1, and ATG-7 (p<0.001) genes expression decreased significantly in treatment groups compared to busulfan-induced azoospermia. Conclusion: According to our findings, edaravone can improve spermatogenesis in busulfan-induced azoospermia through free radical scavenging and autophagy modulation in testicular tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.