Resilience in the urban context can be described as a continuum of absorptive, adaptive, and transformative capacities. The need to move toward a sustainable future and bounce forward after any disruption has led recent urban resilience initiatives to engage with the concept of transformative resilience when and where conventional and top-down resilience initiatives are less likely to deliver effective strategies, plans, and implementable actions. Transformative resilience pathways emphasize the importance of reflexive governance, inclusive co-creation of knowledge, innovative and collaborative learning, and self-organizing processes. To support these transformative pathways, considering techno-social co-evolution and digital transformation, using new data sources such as Volunteered Geographic Information (VGI) and crowdsourcing are being promoted. However, a literature review on VGI and transformative resilience reveals that a comprehensive understanding of the complexities and capacities of utilizing VGI for transformative resilience is lacking. Therefore, based on a qualitative content analysis of available resources, this paper explores the key aspects of using VGI for transformative resilience and proposes a comprehensive framework structured around the identified legal, institutional, social, economic, and technical aspects to formalize the process of adopting VGI in transformative resilience initiatives.
Transformative disaster resilience in times of climate change underscores the importance of reflexive governance, facilitation of socio-technical advancement, co-creation of knowledge, and innovative and bottom-up approaches. However, implementing these capacity-building processes by relying on census-based datasets and nomothetic (or top-down) approaches remains challenging for many jurisdictions. Web 2.0 knowledge sharing via online social networks, whereas, provides a unique opportunity and valuable data sources to complement existing approaches, understand dynamics within large communities of individuals, and incorporate collective intelligence into disaster resilience studies. Using Twitter data (passive crowdsourcing) and an online survey, this study draws on the wisdom of crowds and public judgment in near-real-time disaster phases when the flood disaster hit Germany in July 2021. Latent Dirichlet Allocation, an unsupervised machine learning technique for Topic Modeling, was applied to the corpora of two data sources to identify topics associated with different disaster phases. In addition to semantic (textual) analysis, spatiotemporal patterns of online disaster communication were analyzed to determine the contribution patterns associated with the affected areas. Finally, the extracted topics discussed online were compiled into five themes related to disaster resilience capacities (preventive, anticipative, absorptive, adaptive, and transformative). The near-real-time collective sensing approach reflected optimized diversity and a spectrum of people’s experiences and knowledge regarding flooding disasters and highlighted communities’ sociocultural characteristics. This bottom-up approach could be an innovative alternative to traditional participatory techniques of organizing meetings and workshops for situational analysis and timely unfolding of such events at a fraction of the cost to inform disaster resilience initiatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.