The graphene-based nanocomposites are considered as great candidates for enhancing electrical and mechanical properties of nonconductive scaffolds in cardiac tissue engineering. In this study, reduced graphene oxide-silver (rGO-Ag) nanocomposites(1 and 2 wt%) were synthesized and incorporated into polyurethane (PU) nanofibers via electrospinning technique. Next, the human cardiac progenitor cells (hCPCs) were seed on these scaffolds for in vitro studies. The rGO-Ag nanocomposites were studied by X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscope (TEM). After incorporation of rGO-Ag into PU nanofibers, the related characterizations were carried out including scanning electron microscope (SEM), TEM, water contact angle, and mechanical properties. Furthermore, PU and PU/nanocomposites scaffolds were used for in vitro studies, wherein hCPCs showed good cytocompatibility via 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and considerable attachment on the scaffold using SEM studies. Real-time polymerase chain reaction (PCR) and immunostaining studies confirmed the upregulation of cardiac specific genes including GATA-4, T-box 18 (TBX 18), cardiac troponin T (cTnT), and alphamyosin heavy chain (α-MHC) in the PU/rGO-Ag scaffolds in comparison with neat PU ones. Therefore, these nanofibrous rGO-Ag-reinforced PU scaffolds can be considered as suitable candidates in cardiac tissue engineering.
While the differentiation factors have been widely used to differentiate mesenchymal stem cells (MSCs) into various cell types, they can cause harm at the same time. Therefore, it is beneficial to propose methods to differentiate MSCs without factors. Herein, magnetoelectric (ME) nanofibers were synthesized as the scaffold for the growth of MSCs and their differentiation into neural cells without factors. This nanocomposite takes the advantage of the synergies of the magnetostrictive filler, CoFe2O 4 nanoparticles (CFO), and piezoelectric polymer, polyvinylidene difluoride (PVDF). Graphene oxide nanosheets were decorated with CFO nanoparticles for a proper dispersion in the polymer through a hydrothermal process. After that, the piezoelectric PVDF polymer, which contained the magnetic nanoparticles, underwent the electrospun process to form ME nanofibers, the ME property of which has the potential to be used in areas such as tissue engineering, biosensors, and actuators.
The function of fibroblast cells in wounded areas results in reconstruction of the extra cellular matrix and consequently resolution of granulation tissue. It is suggested that the use of platelet-rich plasma can accelerate the healing process in nonhealing or slow-healing wounds. In this study, a simple and novel method has been used to fabricate an electrospun three-layered scaffold containing plasma rich in growth factor with the aim of increasing the proliferation and migration of fibroblast cells in vitro. First, plasma rich in growth factor was derived from platelet rich plasma, and then a three-layered scaffold was fabricated using PLLA nanofibers as the outer layers and plasma rich in growth factor-containing gelatin fibers as the internal layer. The growth morphology of cells seeded on this scaffold was compared to those seeded on one layered PLLA scaffold. The study of the cell growth rate on different substrates and the migration of cells in response to the drug release of multilayered scaffold was investigated by the cell quantification assay and a modified under agarose assay. Scanning electron microscopy and fluorescence images showed that cells seeded on multilayered scaffold were completely oriented 72 hours after seeding compared to those seeded on PLLA scaffold. The cell quantification assay also indicated significant increase in proliferation rate of cells seeded on three-layered scaffold compared to those seeded on PLLA scaffold and finally, monitoring cell migration proved that cells migrate significantly toward the three-layered scaffold up to 48 to 72 hours and afterwards start to show a diminished migration rate toward this scaffold. K E Y W O R D S electrospinning, fibroblast migration, multilayered scaffolds, platelet rich plasma, skin tissue engineering
Among different tissues, endothelial/cardiac types require specific factors to promote myocardial regeneration after occurred injuries. Herein, cardiac stem cells (CSCs) as the major cell population that involved in cardiovascular repair were selected to study the role of polyethyleneimine (PEI) agent on endothelial differentiation. After preparation of electrospun network of PEI with polyacrylonitrile, the related characterizations were carried out including scanning electron microscope (SEM), field-emission SEM, water contact angle, Fourier transform infrared spectroscopy and mechanical properties. Also, the release kinetic of the corresponding agent was studied up to 7 days. The cell differentiation studies were done in the following with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, Real-time polymerase chain reaction and immunostaining method. The whole obtained results approved the higher differentiation of CSCs into endothelial/cardiac cells. Finally, it is recommended that the PEI delivering increases the healing potency of CSCs and accordingly the regeneration speed of damaged cardiovascular tissue would be improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.