Liposomal formulations were significantly explored over the last decade for the ophthalmic drug delivery applications. These formulations are mainly composed of phosphatidylcholine (PC) and other constituents such as cholesterol and lipid-conjugated hydrophilic polymers. Liposomes are biodegradable and biocompatible in nature. Current approaches for topical delivery of liposomes are focused on improving the corneal adhesion and permeation by incorporating various bioadhesive and penetration enhancing polymers. In the case of posterior segment disorders improvement in intravitreal half life and targeted drug delivery to the retina is achieved by liposomes. In this paper we have attempted to summarize the applications of liposomes in the field of ophthalmic drug delivery by citing numerous investigators over the last decade.
Poor bioavailability of topically instilled drug is the major concern in the field of ocular drug delivery. Efflux transporters, static and dynamic ocular barriers often possess rate limiting factors for ocular drug therapy. Different formulation strategies like suspension, ointment, gels, nanoparticles, implants, dendrimers and liposomes have been employed in order to improve drug permeation and retention by evading rate limiting factors at the site of absorption. Chemical modification such as prodrug targeting various nutrient transporters (amino acids, peptide and vitamin) has evolved a great deal ofintereSt to improve ocular drug delivery. In this review, we have discussed various prodrug strategies which have been widely applied for enhancing therapeutic efficacy of ophthalmic drugs. The purpose of this review is to provide an update on the utilization of prodrug concept in ocular drug delivery. In addition, this review will highlight ongoing academic and industrial research and development in terms of ocular prodrug design and delivery.
A donor-acceptor charge transfer system based on two discotic mesogens has been synthesized. The donor is either a triphenylene (POG0) or a triphenylene-based conjugated dendron (POG1), while the acceptor is a perylene diimide (PDI) core. The donors are covalently linked to the bay positions of the PDI core through an ether linkage. In chloroform, due to the short donor-acceptor distance and the matching frontier orbital levels, photoinduced charge transfer from either the donor excitation or the acceptor excitation are both thermodynamically and kinetically favored, resulting in efficient quenching of both donor and acceptor fluorescence. In a less polar solvent, hexane, while charge transfer is still the dominant mechanism for decay of the excited electronic state of POG1, photoinduced charge transfer is no longer energetically favorable for POG0 when the acceptor PDI core is excited, making the PDI core of POG0 weakly fluorescent in chloroform but strongly so in hexane. In solid film, POG0 is highly aggregated through both PDI-PDI and triphenylene-triphenylene homotopic stacking. POG1, on the other hand, aggregates through triphenylene dendrons with limited PDI-PDI core stacking, presumably due to the steric hindrance caused by bulky triphenylene moieties which block the access to the PDI core. The efficient photoinduced charge transfer, coupled with the homotopic stacking that forms separated electron-transporting PDI-stacked columns and hole transporting triphenylene-stacked columns, suggests that the reported donor-acceptor systems based on dual-discotic mesogens are potentially new efficient photovoltaic materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.