Introduction Cervical spondylosis is the most common cause of myelopathy in the cervical due to chronic compression of the spinal cord in patients aged 55 years or older. Recent studies suggest that olive extracts suppress inflammation and reduce stress oxidative injury. The purpose of this study was to determine the potential neuroprotective effects of olive leaf extract (OLE) in an experimental cervical spondylotic myelopathy model. Methods This study was divided into 6 groups; Control Negative (Sham-Operated) Group, Control Positive 1 & 2 (early chronic and chronic), Treatment Groups 1, 2 & 3 (prophylactic, concomitant & late). Olive leaf extract (OLE) give 350 mg/kg BW and spinal cord sample was taken at the compression level C5. Histopathological assessment and immunohistochemistry of Amyloid-β, p-Tau, TDP-43 dan CD-68 dan evaluation of functional motoric outcome was done before animals were terminated. Results Chronic spinal cord compression increased the expression of Amyloid-β, p-Tau, TDP-43 dan CD-68. OLE 350 mg/kg BW decreased the expression of these biomarkers and increased functional motoric outcome, especially as prophylactic dan concomitant treatment. Discussion These findings indicate that OLE may be effective in protecting cervical spondylotic myelopathy.
BACKGROUND: Olive polyphenols are known to be an anti-oxidants and anti-inflammatory agents. AIM: The purpose of this study was to determine the potential neuroprotective effect on chronic cervical myelopathy rabbit model. METHODS: This study was divided into six groups; control negative (Sham-Operated) group, control positive 1 and 2, treatment groups 1, 2, and 3. Olive leaf extract (OLE) gives 350 mg/kg BW and spinal cord sample was taken at the compression level C5. Histopathological assessment and immunohistochemistry of neurofilaments (NF), S-100, brain derived neurotrophic factor (BDNF), and evaluation of functional motoric outcome were done before animals were terminated. RESULTS: Chronic cervical myelopathy in rabbit model causes decreased expression of NF, S-100, BDNF, and decreased motor function. Oral administration of OLE increased the expression of these biomarkers and improved motor function outcomes. DISCUSSION: These findings indicate that OLE may be effective in protecting chronic cervical myelopathy in rabbit model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.