The last decade has seen an increased focus on evaluating the safety and sustainability of chemicals in consumer and industrial products. In order to effectively and accurately evaluate safety and sustainability, tools are needed to characterize hazard, exposure, and risk pertaining to products and processes. Because many of these tools will be used to identify problematic chemistries, and because many have potential applications in various steps of an alternatives analysis, the limitations and capabilities of available tools should be understood by users so that, ultimately, potential chemical risk is accurately reflected. In our study, we examined 32 chemical characterization tools from government, industry, academia, and non-governmental organizations (NGOs). The tools we studied were diverse, and varied widely in their scope and assessment. As such, they were separated into five categories for comparison: 1) Screening and Prioritization; 2) Database Utilization; 3) Hazard Assessment; 4) Exposure and Risk Assessment; and 5) Certification and Labeling. Each tool was scored based on our weighted set of criteria, and then compared to other tools in the same category. Ten tools received a high score in one or more categories; 24 tools received a medium score in one or more categories, and five tools received a low score in one or more categories. Although some tools were placed into more than one category, no tool encompassed all five of the assessment categories. Though many of the tools evaluated may be useful for providing guidance for hazards - and, in some cases, exposure - few tools characterize risk. To our knowledge, this study is the first to critically evaluate a large set of chemical assessment tools and provide an understanding of their strengths and limitations.
Abstract. Sensitive Schistosoma japonicum detection methods are needed to progress from schistosomiasis control to elimination. The sensitivity of the Kato-Katz thick smear and miracidium hatching tests decrease with infection intensity and serological tests cannot always identify current infections. We evaluated a fecal polymerase chain reaction (PCR) assay to detect S. japonicum infection in 106 humans and 8 bovines in China. PCR was highly sensitive, detecting S. japonicum DNA at 0.5 eggs/g of stool. Comparing PCR examination of a single stool sample to the miracidium hatching test using three consecutive stool samples, more humans were hatching test positive (20%) than PCR positive (15%). However, two individuals were PCR positive in a village where no infections were detected by coprological methods. The sensitivity of PCR makes it a promising tool for schistosomiasis diagnostics and screening, although egg shedding variability and stool sample size present challenges for any detection method in low-transmission areas.
An increasing number of hazard assessment tools and approaches are being used in the marketplace as a means to differentiate products and ingredients with lower versus higher hazards or to certify what some call greener chemical ingredients in consumer products. Some leading retailers have established policies for product manufacturers and their suppliers to disclose chemical ingredients and their related hazard characteristics often specifying what tools to use. To date, no data exists that show a tool's reliability to provide consistent, credible screening-level hazard scores that can inform greener product selection. We conducted a small pilot study to understand and compare the hazard scoring of several hazard screening tools to determine if hazard and toxicity profiles for chemicals differ. Seven chemicals were selected that represent both natural and man-made chemistries as well as a range of toxicological activity. We conducted the assessments according to each tool provider's guidelines, which included factors such as endpoints, weighting preferences, sources of information, and treatment of data gaps. The results indicate the tools varied in the level of discrimination seen in the scores for these 7 chemicals and that tool classifications of the same chemical varied widely between the tools, ranging from little or no hazard or toxicity to very high hazard or toxicity. The results also highlight the need for transparency in describing the basis for the tool's hazard scores and suggest possible enhancements. Based on this pilot study, tools should not be generalized to fit all situations because their evaluations are context-specific. Before choosing a tool or approach, it is critical that the assessment rationale be clearly defined and matches the selected tool or approach. Integr Environ Assess Manag 2017;13:139-154. C 2016 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC
Background: Lead (Pb) is a pervasive metal that can be found in, and potentially leached from, ceramics, particularly into acidic foods and beverages. The purpose of this study was to investigate potential lead exposure from coffee and tea consumption, given that both are acidic and routinely consumed from ceramic mugs. We measured the concentration of lead in coffee and tea at two different time points brewed in five readily available mugs known to contain lead. Results were compared to EPA's action level for drinking water and FDA's allowable level for bottled water. The measured concentrations, along with consumption patterns, were also used to calculate potential daily lead doses, which were compared to California's Safe Harbor Levels under Proposition 65. Additionally, we estimated changes in adult and fetal blood lead levels using EPA's Adult Lead Methodology model. Findings: The results of this pilot study suggest that lead in ceramic mugs can leach into coffee and tea. The measured lead concentrations ranged from 0.2 to 8.6 μg/L in coffee, and from <0.2 to 1.6 μg/L in tea. No statistical differences were found between the measured concentrations in coffee, tea, or water within each cup, or in the measured concentrations between retention times within each cup. However, a statistically significant difference was observed in the lead concentrations measured between cups, indicating that the lead concentrations were dependent on the cup used, rather than on the beverage or retention time. The estimated daily dose of lead exceeded the California Maximum Allowable Dose Level of 0.5 μg per day for one of the five mugs tested. Blood lead levels did not increase above regulatory or guidance values. Conclusions: This preliminary investigation provides data on potential lead exposures from daily beverage consumption among typical consumers, relevant to a substantial portion of the population, with particular implications for pregnant women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.