Purpose We investigate the relationships between oocyte developmental capacity and follicular size of its origin in Japanese women: those undergoing conventional IVF (cIVF) and ICSI, respectively. Methods A total of 3377 follicles were punctured separately and were classified into three groups (large, medium, and small) by their diameters. A total of 1482 retrieved oocytes were individually cultured and received cIVF or ICSI. The oocytes receiving ICSI were denuded and the number of mature (MII) oocytes was counted. Results The oocyte retrieval rates and the proportion of MII oocytes were significantly lower in small follicles than in large follicles. Under cIVF, the fertilization rate was significantly lower in oocytes from small follicles than large follicles. Under ICSI, the fertilization rate for MII oocytes was not significantly related to follicular size. Follicular size was not significantly related to the development potential to blastocyst and pregnancy rate for either the cIVF oocytes or the ICSI oocytes. Conclusions Although the fertilization rate by cIVF is low in oocytes from small follicles due to the lower proportion of mature oocytes, their development potential is comparable to that of oocytes from larger follicles if they could be fertilized. Under ICSI using mature oocytes, their development potential is not related to follicular size.
Women usually experience body weight gain with aging, which can put them at risk for many chronic diseases. Previous studies indicated that melatonin treatment attenuates body weight gain and abdominal fat deposition in several male animals. However, it is unclear whether melatonin affects female animals in the same way. This study investigated whether long-term melatonin treatment can attenuate body weight gain with aging and, if it does, what the mechanism is. Ten-week-old female ICR mice were given melatonin-containing water (100 μg/mL) or water only until 43 weeks. Melatonin treatment significantly attenuated body weight gain at 23 weeks (control; 57.2±2.0 g vs. melatonin; 44.4±3.1 g), 33 weeks (control; 65.4±2.6 g vs. melatonin; 52.2±4.2 g) and 43 weeks (control; 66.1±3.2 g vs. melatonin; 54.4±2.5 g) without decreasing the amount of food intake. Micro-CT analyses showed that melatonin significantly decreased the deposition of visceral and subcutaneous fat. These results suggested that melatonin attenuates body weight gain by inhibiting abdominal fat deposition. Metabolome analysis of the liver revealed that melatonin treatment induced a drastic change in the metabolome with the down-regulation of 149 metabolites, including the metabolites of glucose and amino acids. Citrate, which serves as a source of de novo lipogenesis, was one of the down-regulated metabolites. These results show that long-term melatonin treatment induces drastic changes of metabolism and attenuates body weight gain and fat deposition with aging in female mice.
Melatonin is a promising reagent that can improve assisted reproductive technology (ART) outcomes in infertility patients. However, melatonin is not effective for all infertile patients, and it remains unclear for which patients melatonin would be effective. This study examined the effects of melatonin on ART outcomes and examined its mechanisms. Melatonin increased the fertilization rate in patients whose fertilization rates in the previous cycle were less than 50%, but not in patients whose fertilization rates were more than 50% in the previous cycle. Melatonin increased the blastocyst formation rate in patients whose embryo development rates in the previous cycle were less than 50%, but not in patients whose embryo development rates were more than 50% in the previous cycle. To clarify its mechanisms, transcriptome changes by melatonin treatment in granulosa cells (GCs) of the patients were examined by RNA-sequence. Melatonin treatment altered the transcriptomes of GCs of patients with poor ART outcomes so that they were similar to the transcriptomes of patients with good ART outcomes. The altered genes were associated with the inhibition of cell death and T-cell activity, and the activation of steroidogenesis and angiogenesis. Melatonin treatment was effective for patients with poor fertilization rates and poor embryo development rates in the previous ART cycle. Melatonin alters the GCs transcriptome and, thus, their functions, and this could improve the oocyte quality, leading to good ART outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.