We study the procedure for sequential unambiguous state discrimination. A qubit is prepared in one of two possible states, and measured by two observers Bob and Charlie sequentially. A necessary condition for the state to be unambiguously discriminated by Charlie is the absence of entanglement between the principal qubit, prepared by Alice, and Bob's auxiliary system. In general, the procedure for both Bob and Charlie to recognize between two nonorthogonal states conclusively relies on the availability of quantum discord which is precisely the quantum dissonance when the entanglement is absent. In Bob's measurement, the left discord is positively correlated with the information extracted by Bob, and the right discord enhances the information left to Charlie. When their product achieves its maximum the probability for both Bob and Charlie to identify the state achieves its optimal value.
The sequential unambiguous state discrimination (SSD) of two states prepared in arbitrary prior probabilities is studied, and compared with three strategies that allow classical communication. The deviation from equal probabilities contributes to the success in all the tasks considered. When one considers at least one of the parties succeeds, the protocol with probabilistic cloning is superior to others, which is not observed in the special case with equal prior probabilities. We also investigate the roles of quantum correlations in SSD, and show that the procedure requires discords but rejects entanglement. The left and right discords correspond to the part of information extracted by the first observer and the part left to his successor respectively. Their relative difference is extended by the imbalance of prior probabilities.Keywords Sequential state discrimination · Entanglement · Discord
IntroductionThe roles of quantum correlations in quantum information procedures is a fundamental problem in quantum information. These correlations have been widely investigated in various perspectives such as quantum entanglement [1], Bell nonlocality [2], and quantum discord [3,4]. One of the interesting findings in this field is that the algorithm for deterministic quantum computation with one qubit (DQC1) can surpass the performance of the corresponding classical ⋆ Quantum Information Processing (2018) 17:260
In noncommutative phase space, wave functions and energy spectra are derived for the three-dimensional (3D) Klein–Gordon oscillator in a background magnetic field. The raising and lowering operators for this system are derived from the Heisenberg equations of motion for a 3D nonrelativistic oscillator. The coherent states are obtained as the eigenstates of the lowering operators and it is found that the coherent states are not the minimum uncertainty states due to the noncommutativity of the space. It is also pointed out that in the semiclassical limit, quantum matrix elements give solutions to the semiclassical equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.