Dendritic cells (DCs) are first responders of the innate immune system that integrate signals from external stimuli to direct context-specific immune responses. Current models suggest that an active switch from mitochondrial metabolism to glycolysis accompanies DC activation to support the anabolic requirements of DC function. We show that early glycolytic activation is a common program for both strong and weak stimuli, but that weakly activated DCs lack long-term HIF-1α-dependent glycolytic reprogramming and retain mitochondrial oxidative metabolism. Early induction of glycolysis is associated with activation of AKT, TBK, and mTOR, and sustained activation of these pathways is associated with long-term glycolytic reprogramming. We show that inhibition of glycolysis impaired maintenance of elongated cell shape, DC motility, CCR7 oligomerization, and DC migration to draining lymph nodes. Together, our results indicate that early induction of glycolysis occurs independent of pro-inflammatory phenotype, and that glycolysis supports DC migratory ability regardless of mitochondrial bioenergetics.
Integrin-extracellular matrix interactions are important determinants of beta cell behaviours. The β1 integrin is a well-known regulator of beta cell activities; however, little is known of its associated α subunits. In the present study, αβ1 integrin expression was examined in the rat insulinoma cell line (INS-1) to identify their role in beta cell survival and function. Seven α subunits associated with β1 integrin were identified, including α1-6 and αV. Among these heterodimers, α3β1 was most highly expressed. Common ligands for the α3β1 integrin, including fibronectin, laminin, collagen I and collagen IV were tested to identify the most suitable matrix for INS-1 cell proliferation and function. Cells exposed to collagen I and IV demonstrated significant increases in adhesion, spreading, cell viability, proliferation, and FAK phosphorylation when compared to cells cultured on fibronectin, laminin and controls. Integrin-dependent attachment also had a beneficial effect on beta cell function, increasing Pdx-1 and insulin gene and protein expression on collagens I and IV, in parallel with increased basal insulin release and enhanced insulin secretion upon high glucose challenge. Furthermore, functional blockade of α3β1 integrin decreased cell adhesion, spreading and viability on both collagens and reduced Pdx-1 and insulin expression, indicating that its interactions with collagen matrices are important for beta cell survival and function. These results demonstrate that specific αβ1 integrin-ECM interactions are critical regulators of INS-1 beta cell survival and function and will be important in designing optimal conditions for cell-based therapies for diabetes treatment.
Aims/hypothesis Recent studies have demonstrated that in adult murine beta cells the forkhead box O1 (FOXO1) transcription factor regulates proliferation and stress resistance. However, the role of FOXO1 during pancreatic development remains largely unknown. The present study aimed to characterise the expression of the FOXO1 transcription factor in the early to mid-gestation human fetal pancreas and to understand its role in islet cell development. Methods Human (8-21 week fetal age) pancreases were examined using immunohistological, quantitative RT-PCR and western blotting. Isolated human (18-21 week) fetal islet epithelial cell clusters were treated with insulin or glucose, or transfected with FOXO1 small interfering RNA (siRNA). Results Nuclear and cytoplasmic FOXO1 were widely produced during human fetal endocrine pancreatic development, co-localising in cells with the transcription factors pancreatic and duodenal homeobox 1 (PDX-1) and neurogenin 3 (NGN3) as well as cytokeratin 19 (CK19), insulin and glucagon. Treatment with exogenous insulin (50 nmol/l) induced the nuclear exclusion of FOXO1 in both cytokeratin 19 (CK19) + (p<0.01) and insulin + cells (p<0.05) in parallel with increased phospho-Akt (p<0.05) production. siRNA knockdown of FOXO1 significantly increased the number of NGN3 + (p<0.01) and NK6 homeobox 1 (NKX6-1) + (p<0.05) cells in parallel with increases in insulin gene expression (p<0.03) and C-peptide + cells (p<0.05) and reduced levels of hairy and enhancer of split 1 (HES1) (p<0.01). Conclusions/interpretation Our results indicate that FOXO1 may negatively regulate beta cell differentiation in the human fetal pancreas by controlling critical transcription factors, including NGN3 and NKX6-1. These data suggest that the manipulation of FOXO1 levels may be a useful tool for improving cell-based strategies for the treatment of diabetes.Keywords Human fetal pancreas . Human islet epithelial cell clusters . Islet transcription factors . Nuclear FOXO1 . FOXO1 siRNA Electronic supplementary material The online version of this article
aPKC is highly expressed and activated in cancers of epithelial origin. aPKC is sufficient to disrupt apical-basal polarity and overcome contact inhibition of epithelial cell growth to promote a transformed phenotype by deregulating Hippo/Yap signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.