The reaction between 1,n-terminal diols (n = 3 or 6) with simple alcohols (MeOH, EtOH, and n-PrOH) in supercritical CO(2) over an acid catalyst (Amberlyst 15) leads to two possible products, a mono- and a bis-ether. At 150 degrees C, the selectivity of the reaction with 1,6-hexanediol and MeOH can be switched from 1:20 in favor of the bis-ether at 50 bar to 9:1 in favor of the desymmetrized mono-ether at 200 bar. It is demonstrated that the switch in selectivity is associated with the phase state of the reaction mixture, with monophasic conditions favoring the mono-ether and biphasic conditions favoring the bis-ether. A rationalization of this effect is also presented.
Supported catalysts having pybox chiral moieties were prepared as macroporous monolithic miniflow systems. These catalysts are based on styrene-divinylbenzene polymeric backbones having different compositions and pybox chiral moieties. Their corresponding ruthenium complexes were tested for the continuous flow cyclopropanation reaction between styrene and ethyldiazoacetate (EDA) under conventional conditions and in supercritical carbon dioxide (scCO2). Ru-Pybox monolithic miniflow reactors not only provided a highly efficient and robust heterogeneous chiral catalyst but also allowed us to develop more environmental reaction conditions without sacrificing the global efficiency of the process.
Monolithic polymers functionalised with BOX-Cu moieties can be applied for the cyclopropanation reaction under batch and flow conditions using either conventional or supercritical solvents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.