Ion beam sputtering has been applied for polishing, figuring and multilayer coating on silicon and quartz glass Substrates for the fabrication of x-ray mirrors. For high-performance x-ray optics extremely low microroughnesses of the substrates have to be achieved. Particularly for low d-spacing multilayers (d = 1...2 nm) even small improvements of the surface quality result in significant performance gains of the mirrors. By ion beam polishing silicon substrate surfaces could be smoothed from 0.18 nm rms to 0.11 rim rms (AFM scan length = 5 mu m). Furthermore figuring of spherical substrates into elliptical or parabolic surface contours has been developed and applied. Spherical quartz glass substrates with initial rms roughnesses of 0.73 nm and 0.52 nm show reduced roughnesses after figuring and multilayer coating of 0.26 nm and 0.10 nm using AFM scan lengths of 20 pm and 5 pm, respectively. The testing of the ion beam figured mirrors for the application as parallel beam and focussing optics shows very promising results: The comparison of collimating mirrors, produced either by ion beam figuring or bending, shows very similar x-ray intensities. However, the ion beam figured mirrors open the perspective for further reduced figure errors, improved long-term stability and 2-dimensional focusing
The application of thin film coating processes for the fabrication of diffractive X-ray optical elements like sputtered-sliced zone plates or multilayer Laue lenses (MLL) is a very promising approach for X-ray focusing down to spot sizes of < 10 nm. However, for practical useful focal length in the order of several millimeters or a few centimeters, multilayer thicknesses of several 10 mu m up to a few 100 mu m are necessary in order to have large enough numerical apertures of the lenses. Currently one of the main challenges is to coat low-stress multilayers with large total thicknesses in the order of 100 mu m. Usually sputter deposition results in thin films with significant compressive stress. With new material combinations such as Mo/MoSi2/Si/MoSi2 and W/WSi2/Si/WSi2 the overall stress can be reduced to almost zero if the individual thicknesses are properly adapted. In the case of these four-layer-systems only the period thickness d(p) follows the zone plate law. In case of Mo/MoSi2/Si/MoSi2, stress-free multilayers are obtained with d(Mo) = 0.5*d(p), d(MoSi2) = 0.16*d(p) and d(Si) = 0.34*d(p)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.