We investigate the relation between global foreign exchange (FX) volatility risk and the cross section of excess returns arising from popular strategies that borrow in low interest rate currencies and invest in high interest rate currencies, so‐called “carry trades.” We find that high interest rate currencies are negatively related to innovations in global FX volatility, and thus deliver low returns in times of unexpected high volatility, when low interest rate currencies provide a hedge by yielding positive returns. Furthermore, we show that volatility risk dominates liquidity risk and our volatility risk proxy also performs well for pricing returns of other portfolios.
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Terms of use: Documents in EconStor may Abstract:We examine whether consumer confidence -as a proxy for individual investor sentimentaffects expected stock returns internationally in 18 industrialized countries. In line with recent evidence for the U.S., we find that sentiment negatively forecasts aggregate stock market returns on average across countries. When sentiment is high, future stock returns tend to be lower and vice versa. This relation also holds for returns of value stocks, growth stocks, small stocks, and for different forecasting horizons. Finally, we employ a cross-sectional perspective and provide evidence that the impact of sentiment on stock returns is higher for countries which have less market integrity and which are culturally more prone to herd-like behavior and overreaction.
SUMMARY We investigate whether return volatility is predictable by macroeconomic and financial variables to shed light on the economic drivers of financial volatility. Our approach is distinct owing to its comprehensiveness: First, we employ a data‐rich forecast methodology to handle a large set of potential predictors in a Bayesian model‐averaging approach and, second, we take a look at multiple asset classes (equities, foreign exchange, bonds and commodities) over long time spans. We find that proxies for credit risk and funding liquidity consistently show up as common predictors of volatility across asset classes. Variables capturing time‐varying risk premia also perform well as predictors of volatility. While forecasts by macro‐finance augmented models also achieve forecasting gains out‐of‐sample relative to autoregressive benchmarks, the performance varies across asset classes and over time. Copyright © 2012 John Wiley & Sons, Ltd.
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Abstract: Using a new data set on investor sentiment we show that institutional and individual sentiment proxy for smart money and noise trader risk, respectively. First, using bias-adjusted long-horizon regressions, we document that institutional sentiment forecasts stock market returns at intermediate horizons correctly, whereas individuals consistently get the direction wrong. Second, VEC models show that institutional sentiment forecasts mean-reversion whereas individuals forecast trend continuation. Finally, institutional investors take into account expected individual sentiment when forming their expectations in a way that higher (lower) expected sentiment of individuals lowers (increases) institutional return forecasts. Individuals neglect the information contained in institutional sentiment. JEL-Classification: G11, G12, G14 Keywords: Terms of use: Documents in EconStor mayinvestor sentiment, predictive regressions, noise trader, smart moneyWe would like to thank two anonymous referees and Lukas Menkhoff for very useful comments and especially Manfred Hübner for kindly providing the data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.