Hybrid sol-gel materials have been extensively studied as viable alternatives to toxic chromate (VI)-based coatings for the corrosion protection of AA2024-T3 in the aerospace industry, due to the wide range of available chemistries they offer and the tremendous development potential of innovative functional coatings. However, so far, little work has been performed in identifying the effect of the employed chemistries on the structure and anticorrosion properties of the coatings. This work proposes to contribute to a better understanding of the relationship existing between the structure, morphology and anticorrosion properties of hybrid sol-gel coatings deposited on AA2024-T3 aluminium surfaces, the most widely used alloy in the aerospace industry. The sol-gels are prepared employing two hybrid precursors; an organosilane, 3-trimethoxysilylpropylmethacrylate, and a zirconium complex prepared from the chelation of zirconium n-propoxide, and methacrylic acid. The structure of the hybrid sol-gel formulation is modified by altering the concentration of the transition metal complex. The structure and morphology of the coatings are characterised by dynamic light scattering, fourier transform infrared spectroscopy, silicon nuclear magnetic resonance spectroscopy, differential scanning calorimetry, scanning electron microscopy, atomic-force microscopy and the anticorrosion barrier properties characterised by electrochemical impedance spectroscopy and neutral salt-spray. It is found that the transition metal concentration affected the morphology and structure, as well as the anticorrosion performances of the hybrid sol-gel coatings. A direct correlation between the morphology of the coatings and their final anticorrosion barrier properties is demonstrated, and the optimum material amongst this series is determined to be comprised of a concentration of between 20 and 30% of transition metal.
In sol-gel chemistry, hydrolysis is the key step in the formation of the reactive hydroxide groups that are responsible for the formation of inorganic networks via the occurrence of condensation reactions. Though previous studies have investigated the effect of the hydrolysis conditions on the structure of organically modified silicates (ormosils), no study, to our knowledge, has investigated this variable on the structure of hybrid materials prepared by combinations of an ormosil and a transition metal (TM). Here, we propose to investigate this effect in a hybrid material composed of 3-trimethoxysilylpropylmethacrylate and a zirconium complex. To also highlight the effects of the precursor's concentrations on the hydrolysis and condensation reactions of the hybrid materials, their relative content was altered along with the hydrolysis degree. The anticorrosion barrier properties were identified by characterisation of coatings deposited on AA2024-T3 substrates and correlation between the structure and the anticorrosion properties of the coatings were performed based on results obtained from structural characterisations (DLS, FTIR, 29 Si-NMR, DSC, AFM and SEM) and corrosion testing (EIS and NSS). It is demonstrated that competition in the formation of siloxane and Si-O-Zr bonds takes place and can be controlled by the degree of hydrolysis and the concentration of the zirconium complex. This effect was found to dramatically alter the morphology of the coatings and their subsequent anticorrosion performances. At shortterm exposure times, it is found that the most condensed materials exhibited a higher corrosion resistance while over longer periods the performances were found to level. This article highlighted the critical impact of the hydrolysis degree and zirconium concentration on the connectivity of hybrid sol-gel coatings and the impact this has on corrosion performances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.