Sphingosine 1-phosphate (S1P) is a bioactive lipid molecule that acts as both an extracellular signaling mediator and an intracellular second messenger. S1P is synthesized from sphingosine by sphingosine kinase and is degraded either by S1P lyase or by S1P phosphohydrolase. Recently, mammalian S1P phosphohydrolase (SPP1) was identified and shown to constitute a novel lipid phosphohydrolase family, the SPP family. In this study we have identified a second human S1P phosphohydrolase, SPP2, based on sequence homology to human SPP1. SPP2 exhibited high phosphohydrolase activity against S1P and dihydrosphingosine 1-phosphate. The dihydrosphingosine-1-phosphate phosphohydrolase activity was efficiently inhibited by excess S1P but not by lysophosphatidic acid, phosphatidic acid, or glycerol 3-phosphate, indicating that SPP2 is highly specific to sphingoid base 1-phosphates. Immunofluorescence microscopic analysis demonstrated that SPP2 is localized to the endoplasmic reticulum. Although the enzymatic properties and localization of SPP2 were similar to those of SPP1, the tissue-specific expression pattern of SPP2 was different from that of SPP1. Thus, SPP2 is another member of the SPP family that may play a role in attenuating intracellular S1P signaling.Sphingosine 1-phosphate (S1P), 1 a sphingolipid metabolite, regulates diverse biological processes including mitogenesis, differentiation, migration, and apoptosis both as an extracellular mediator and as an intracellular second messenger (1-3). Extracellular effects of S1P are known to be mediated via the endothelial differentiation gene (Edg) family of plasma membrane G-protein-coupled receptors, whereas its intracellular targets have yet to be determined (2, 3). S1P is synthesized by the phosphorylation of sphingosine and catalyzed by sphingosine kinase. Once formed, S1P is rapidly degraded by S1P lyase to hexadecenal and phosphoethanolamine or dephosphorylated by S1P phosphohydrolase.The existence of a S1P-specific phosphohydrolase had been suggested by biochemical analyses using cultured skin fibroblasts and rat liver (4, 5). In 2000, murine S1P phosphohydrolase (mSPP1) was cloned as a S1P phosphohydrolase based on sequence homology to the yeast sphingoid base 1-phosphate phosphatase, Lcb3p/Lbp1p/Ysr2p (6). Recently, a human homolog of mSPP1, hSPP1, which exhibits 76% identity and 81% similarity to mSPP1, was identified (7). These mammalian SPP1s and their two yeast homologs, Lcb3p and Ysr3p, constitute the SPP family, which is distinct from another lipid phosphohydrolase family, the type 2 lipid phosphate phosphohydrolases (LPP), both in sequence and in biochemical properties. Accordingly, the SPP family members are highly specific to sphingoid base 1-phosphates, including S1P, dihydrosphingosine 1-phosphate (dihydro-S1P), and phytosphingosine 1-phosphate (6 -9); yet the LPP family members have broad substrate specificities including S1P, phosphatidate (PA), lysophosphatidate (LPA), ceramide 1-phosphate, and diacylglycerol pyrophosphate (10 -14). Proteins from bot...
2-Arachidonoylglycerol is an endogenous ligand for the cannabinoid receptors (CB1 and CB2) and has beenshown to exhibit a variety of cannabimimetic activities in vitro and in vivo. Recently, we proposed that 2-arachidonoylglycerol is the true endogenous ligand for the cannabinoid receptors, and both receptors (CB1 and CB2) are primarily 2-arachidonoylglycerol receptors. The CB1 receptor is assumed to be involved in the attenuation of neurotransmission. On the other hand, the physiological roles of the CB2 receptor, which is abundantly expressed in several types of leukocytes such as macrophages, still remain unknown. In this study, we examined the effects of 2-arachidonoylglycerol on the motility of HL-60 cells differentiated into macrophage-like cells. We found that 2-arachidonoylglycerol induces the migration of differentiated HL-60 cells. The migration induced by 2-arachidonoylglycerol was blocked by treatment of the cells with either SR144528, a CB2 receptor antagonist, or pertussis toxin, suggesting that the CB2 receptor and G i /G o are involved in the 2-arachidonoylglycerol-induced migration. Several intracellular signaling molecules such as Rho kinase and mitogen-activated protein kinases were also suggested to be involved. In contrast to 2-arachidonoylglycerol, anandamide, another endogenous cannabinoid receptor ligand, failed to induce the migration. The 2-arachidonoylglycerol-induced migration was also observed for two other types of macrophage-like cells, the U937 cells and THP-1 cells, as well as human peripheral blood monocytes. These results strongly suggest that 2-arachidonoylglycerol induces the migration of several types of leukocytes such as macrophages/monocytes through a CB2 receptor-dependent mechanism thereby stimulating inflammatory reactions and immune responses.
2-arachidonoylglycerol (2-AG) is an endogenous cannabinoid receptor ligand. To date, two types of cannabinoid receptors have been identified: the CB1 receptor, abundantly expressed in the brain, and the CB2 receptor, expressed in various lymphoid tissues such as the spleen. The CB1 receptor has been assumed to play an important role in the regulation of synaptic transmission, whereas the physiological roles of the CB2 receptor remain obscure. In this study, we examined whether the CB2 receptor is present in human eosinophils and found that the CB2 receptor is expressed in human peripheral blood eosinophils. In contrast, human neutrophils do not contain a significant amount of the CB2 receptor. We then examined the effect of 2-AG on the motility of eosinophils. We found that 2-AG induces the migration of human eosinophilic leukemia EoL-1 cells. The migration evoked by 2-AG was abolished in the presence of SR144528, a CB2 receptor antagonist, or by pretreatment of the cells with pertussis toxin, suggesting that the CB2 receptor and Gi/o are involved in the 2-AG-induced migration. The migration of EoL-1 cells induced by 2-AG was suggested to be a result of chemotaxis. In contrast to 2-AG, neither anandamide nor free arachidonic acid elicited the migration. Finally, we examined the effect of 2-AG on human peripheral blood eosinophils and neutrophils and found that 2-AG induces migration of eosinophils but not neutrophils. These results suggest that the CB2 receptor and its endogenous ligand 2-AG may be closely involved in allergic inflammation accompanied by the infiltration of eosinophils.
The possible involvement of 2-arachidonoylglycerol (2-AG), an endogenous ligand for the cannabinoid receptors (CB1 and CB2), in contact dermatitis in mouse ear was investigated. We found that the level of 2-AG was markedly elevated in the ear following a challenge with oxazolone in sensitized mice. Of note, the swelling following the challenge was suppressed by either the administration of SR144528, a CB2 receptor antagonist, immediately after sensitization, or the administration of SR144528 upon the challenge. The effect of AM251, a CB1 receptor antagonist, was marginal in either case. It seems apparent, therefore, that the CB2 receptor and its endogenous ligand 2-AG are closely involved in both the sensitization phase and the elicitation phase of oxazolone-induced contact dermatitis. In line with this, we found that Langerhans cells (MHC class II+) contain a substantial amount of CB2 receptor mRNA, whereas keratinocytes (MHC class II−) do not. We also obtained evidence that the expression of mRNAs for proinflammatory cytokines following a challenge with oxazolone was markedly suppressed by treatment with SR144528. We next examined whether the CB2 receptor and 2-AG participate in chronic contact dermatitis accompanied by the infiltration of tissues by eosinophils. The amount of 2-AG in mouse ear dramatically increased following repeated challenge with oxazolone. Importantly, treatment with SR144528 attenuated both the recruitment of eosinophils and ear swelling in chronic contact dermatitis induced by repeated challenge with oxazolone. These results strongly suggest that the CB2 receptor and 2-AG play important stimulative roles in the sensitization, elicitation, and exacerbation of allergic inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.