Background. The plantar soft tissue plays a critical role in absorbing shocks and attenuating excessive stresses during walking. Plantar soft tissue property and plantar pressure are critical information for footwear design and clinical assessment. The aim of this study was to investigate the relationship between plantar soft tissue hardness and plantar pressure during walking. Methods. 59 healthy volunteers (27 males and 32 females, aged 20 to 82) participated in this study. The plantar surface was divided into five regions: lateral rearfoot, medial rearfoot, lateral midfoot, lateral forefoot, and medial forefoot, and the plantar tissue hardness was tested using Shore durometer in each region. Average dynamic pressures in each region were analyzed for the five regions corresponding to the hardness tests. The relationship between hardness and average dynamic pressure was analyzed in each region. Results. The average hardness of the plantar soft tissue in the above five regions is as follows: lateral rearfoot ( 34.49 ± 6.77 ), medial rearfoot ( 34.47 ± 6.64 ), lateral midfoot ( 27.95 ± 6.13 ), lateral forefoot ( 29.72 ± 5.47 ), and medial forefoot ( 28.58 ± 4.41 ). Differences of hardness were observed between age groups, and hardness of plantar soft tissues in forefoot regions increased with age ( P < 0.05 ). A negative relationship was found between plantar soft tissue hardness and pressure reduction at lateral rearfoot, medial rearfoot, and lateral midfoot ( P < 0.05 ). Conclusion. The hardness of plantar soft tissues changes with age in healthy individuals, and there is a trend of increasing hardness of the plantar soft tissue with age. The plantar soft tissue hardness increases with plantar pressure.
Background This study was aimed to develop a novel dynamic measurement technique for testing the material properties and investigating the effect of continuous compression load on the structural and mechanical properties of human heel pad during actual gait. Methods The dual fluoroscopic imaging system (DFIS) and dynamic foot-ground contact pressure-test plate were used for measuring the material properties, including primary thickness, peak strain, peak stress, elastic modulus, viscous modulus and energy dissipation rate (EDR), both at time zero and following continuous loading. Ten healthy pilot subjects, aged from 23 to 72 (average: 46.5 ± 17.6), were enrolled. A “three-step gait cycle” is performed for all subjects, with the second step striking at a marked position on the force plate with the heel to maintain the location of the tested foot to be in the view of fluoroscopes. The subjects were measured at both relaxed (time-zero group) and fatigue (continuous-loading group) statuses, and the left and right heels were measured using the identical procedures. Results The peak strain, peak stress, elastic modulus, and EDR are similar before and after continuous load, while the viscous modulus was significantly decreased (median: 43.9 vs. 20.37 kPa•s; p < 0.001) as well as primary thicknesses (median: 15.99 vs. 15.72 mm; p < 0.001). Age is demonstrated to be moderately correlated with the primary thicknesses both at time zero (R = -0.507) and following continuous load (R = -0.607). The peak stress was significantly correlated with the elastic modulus before (R = 0.741) and after continuous load (R = 0.802). The peak strain was correlated with the elastic modulus before (R = -0.765) and after continuous load (R = -0.801). The correlations between the viscous modulus and peak stress/ peak strain are similar to above(R = 0.643, 0.577, − 0.586 and − 0.717 respectively). The viscous modulus is positively correlated with the elastic modulus before (R = 0.821) and after continuous load (R = 0.784). Conclusions By using dynamic fluoroscopy combined with the plantar pressure plate, the in vivo viscoelastic properties and other data of the heel pad in the actual gait can be obtained. Age was negatively correlated with the primary thickness of heel pad and peak strain, and was positively correlated with viscous modulus. Repetitive loading could decrease the primary thickness of heel pad and viscous modulus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.