The hybridization of magnons (spin waves) with phonons, if sufficiently strong and comprising of long wavelength excitations, may offer a new playground when manipulating the magnetically ordered systems with light. Applying a magnetic field to a quasi-two-dimensional antiferromagnet, FePS 3 , we tune the magnon-gap excitation to coincide with the initially lower-in-energy phonon modes. Hybrid magnon-phonon modes, the magnon polarons are unveiled with the demonstration of a pronounced avoided crossing between the otherwise bare magnon and phonon excitations. The magnon polarons in FePS 3 are traced with Raman scattering experiments. However, as we show, they also couple directly to terahertz photons, evoking their further explorations in the domain of antiferromagnetic optospintronics. The magnon-phonon coupling is also discussed as a possible reason of the magnon mode splitting observed in the absence of a magnetic field.
In this work, n-ZnO-nanowire/p-Si junction diodes have been fabricated and characterized both physically as well as electrically. The measurements are performed on a single standalone nanowire diode for the investigation of electrical transport through the nano-junction. The rectification properties of the single n-ZnO nanowire/p-Si diode have been studied for various input waveforms and frequencies. The diodes exhibit very promising rectification as well as switching behavior with no charge storage effect and consequently, a switching time as small as ∼1 ms has been achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.