Low rank and sparse representation (LRSR) with dual-dictionaries-based methods for detecting anomalies in hyperspectral images (HSIs) are proven to be effective. However, the potential anomaly dictionary is vulnerable to being contaminated by the background pixels in the above methods, and this limits the effect of hyperspectral anomaly detection (HAD). In this paper, a dual dictionaries construction method via two-stage complementary decision (DDC–TSCD) for HAD is proposed. In the first stage, an adaptive inner window–based saliency detection was proposed to yield a coarse binary map, acting as the indicator to select pure background pixels. For the second stage, a background estimation network was designed to generate a fine binary map. Finally, the coarse binary map and fine binary map worked together to construct a pure background dictionary and potential anomaly dictionary in the guidance of the superpixels derived from the first stage. The experiments conducted on public datasets (i.e., HYDICE, Pavia, Los Angeles, San Diego-I, San Diego-II and Texas Coast) demonstrate that DDC–TSCD achieves satisfactory AUC values, which are separately 0.9991, 0.9951, 0.9968, 0.9923, 0.9986 and 0.9969, as compared to four typical methods and three state-of-the-art methods.
Convolutional neural networks (CNNs) have achieved milestones in object detection of synthetic aperture radar (SAR) images. Recently, vision transformers and their variants have shown great promise in detection tasks. However, ship detection in SAR images remains a substantial challenge because of the characteristics of strong scattering, multi-scale, and complex backgrounds of ship objects in SAR images. This paper proposes an enhancement Swin transformer detection network, named ESTDNet, to complete the ship detection in SAR images to solve the above problems. We adopt the Swin transformer of Cascade-R-CNN (Cascade R-CNN Swin) as a benchmark model in ESTDNet. Based on this, we built two modules in ESTDNet: the feature enhancement Swin transformer (FESwin) module for improving feature extraction capability and the adjacent feature fusion (AFF) module for optimizing feature pyramids. Firstly, the FESwin module is employed as the backbone network, aggregating contextual information about perceptions before and after the Swin transformer model using CNN. It uses single-point channel information interaction as the primary and local spatial information interaction as the secondary for scale fusion based on capturing visual dependence through self-attention, which improves spatial-to-channel feature expression and increases the utilization of ship information from SAR images. Secondly, the AFF module is a weighted selection fusion of each high-level feature in the feature pyramid with its adjacent shallow-level features using learnable adaptive weights, allowing the ship information of SAR images to be focused on the feature maps at more scales and improving the recognition and localization capability for ships in SAR images. Finally, the ablation study conducted on the SSDD dataset validates the effectiveness of the two components proposed in the ESTDNet detector. Moreover, the experiments executed on two public datasets consisting of SSDD and SARShip demonstrate that the ESTDNet detector outperforms the state-of-the-art methods, which provides a new idea for ship detection in SAR images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.