Breast cancer is the most frequently diagnosed malignancy amongst females worldwide. In recent years the management of this disease has transformed considerably, including the administration of chemotherapy in the neoadjuvant setting. Aside from increasing rates of breast conserving surgery and enabling surgery via tumour burden reduction, use of chemotherapy in the neoadjuvant setting allows monitoring of in vivo tumour response to chemotherapeutics. Currently, there is no effective means of identifying chemotherapeutic responders from non‐responders. Whilst some patients achieve complete pathological response (pCR) to chemotherapy, a good prognostic index, a proportion of patients derive little or no benefit, being exposed to the deleterious effects of systemic treatment without any knowledge of whether they will receive benefit. The identification of predictive and prognostic biomarkers could confer multiple benefits in this setting, specifically the individualization of breast cancer management and more effective administration of chemotherapeutics. In addition, biomarkers could potentially expedite the identification of novel chemotherapeutic agents or increase their efficacy. Micro‐RNAs (miRNAs) are small non‐coding RNA molecules. With their tissue‐specific expression, correlation with clinicopathological prognostic indices and known dysregulation in breast cancer, miRNAs have quickly become an important avenue in the search for novel breast cancer biomarkers. We provide a brief history of breast cancer chemotherapeutics and explore the emerging field of circulating (blood‐borne) miRNAs as breast cancer biomarkers for the neoadjuvant treatment of breast cancer. Established molecular markers of breast cancer are outlined, while the potential role of circulating miRNAs as chemotherapeutic response predictors, prognosticators or potential therapeutic targets is discussed.
Background. Every new scientific field can be traced back to a single, seminal publication. Therefore, a bibliometric analysis can yield significant insights into the history and potential future of a research field. This year marks 21 years since that first ground-breaking microRNA (miRNA) publication. Here, we make the case that the miRNA field is mature, utilising bibliometrics.Methods. Utilising the Web of Science™ (WoS) database publication and citation information, we charted the history of miRNA-related publications, describing and dissecting contributions by publication type (plus category, pay-per-view or open access), journal (highlighting dominant journals), by country, citations and languages.Results. We found that the United States of America (USA) publishes the most miRNA papers, followed by China and Germany. Significantly, publications attributed to the USA also receive the most citations per publication, followed by a close grouping of England, Germany and France. We also describe the relevance and acceptance of the miRNA field to different research areas, through its uptake in areas from oncology to plant sciences. Exploring the recent momentous change in publishing, we find that although pay-per view articles vastly out-number open-access articles, the citation rate of pay-per-view articles is currently less than double that of open-access.Conclusions. We believe the trends described here represent the typical evolution of a research field. By analysing publications, citations and distribution patterns, key moments in the evolution of this research area are recognised, indicating the maturation of the miRNA field and providing guidance for future research endeavours.
Background Argonaute-2 (Ago2) is an essential component of microRNA biogenesis implicated in tumourigenesis. However Ago2 expression and localisation in breast cancer remains undetermined. The aim was to define Ago2 expression (mRNA and protein) and localisation in breast cancer, and investigate associations with clinicopathological details. Methods Ago2 protein was stained in breast cancer cell lines and tissue microarrays (TMAs), with intensity and localization assessed. Staining intensity was correlated with clinicopathological details. Using independent databases, Ago2 mRNA expression and gene alterations in breast cancer were investigated. Results In the breast cancer TMAs, 4 distinct staining intensities were observed (Negative, Weak, Moderate, Strong), with 64.2% of samples stained weak or negatively for Ago2 protein. An association was found between strong Ago2 staining and, the Her2 positive or basal subtypes, and between Ago2 intensity and receptor status (Estrogen or Progesterone). In tumours Ago2 mRNA expression correlated with reduced relapse free survival. Conversely, Ago2 mRNA was expressed significantly lower in SK-BR-3 (HER2 positive) and BT-20 (Basal/Triple negative) cell lines. Interestingly, high levels of Ago2 gene amplification (10–27%) were observed in breast cancer across multiple patient datasets. Importantly, knowledge of Ago2 expression improves predictions of breast cancer subtype by 20%, ER status by 15.7% and PR status by 17.5%. Conclusions Quantification of Ago2 improves the stratification of breast cancer and suggests a differential role for Ago2 in breast cancer subtypes, based on levels and cellular localisation. Further investigation of the mechanisms affecting Ago2 dysregulation will reveal insights into the molecular differences underpinning breast cancer subtypes. Electronic supplementary material The online version of this article (10.1186/s12885-019-5884-x) contains supplementary material, which is available to authorized users.
Breast cancer is stratified into four distinct clinical subtypes, using three key biomarkers (Her2/Neu gene status, Estrogen and Progesterone receptor status). However, each subtype is a heterogeneous group, displaying significant variation in survival rates and treatment response. New biomarkers are required to provide more precise stratification of breast cancer cohorts to inform personalised treatment options/predict outcomes. Tip60 is a member of the MYST sub-family of histone acetyltransferases (HATs), and is directly involved in genome maintenance, gene regulation and DNA damage response/repair pathways (key chemotherapeutic influencing mechanisms). We aimed to determine if quantifying Tip60 staining patterns improved breast cancer stratification. We defined Tip60 protein in vivo , quantifying location (cytoplasmic, nuclear), percent of cells and staining intensity in a breast cancer tissue microarray (n = 337). A significant association of specific Tip60 staining patterns with breast cancer subtype, ER or PR status and Tumour grade was found. Importantly, low Tip60 mRNA expression correlated with poor overall survival and relapse free survival. We found Tip60 is a biomarker able to stratify breast cancer patients, and low Tip60 expression is a significant risk factor indicating a higher chance of disease reoccurrence. This work highlights Tip60 regulation as a key factor influencing the development of breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.