Bovine respiratory disease complex (BRD) causes considerable economic loss and biosecurity cost to the beef industry globally and also results in significant degradation to the welfare of affected animals. The successful treatment of this disease depends on the early, timely and cost effective identification of affected animals. The objective of the present study was to investigate the use of an automated, RFID driven, noninvasive infrared thermography technology to determine BRD in cattle. Sixty-five calves averaging 220 kg were exposed to standard industry practices of transport and auction. The animals were monitored for BRD using conventional biometric signs for clinical scores, core temperatures, haematology, serum cortisol and infrared thermal values over 3 weeks. The data collected demonstrated that true positive animals for BRD based on a gold standard including core temperature, clinical score, white blood cell number and neutrophil/lymphocyte ratio displayed higher peak infrared thermal values of 35.7±0.35 °C compared to true negative animals 34.9±0.22 °C (P<0.01). The study also demonstrated that such biometric data can be non-invasively and automatically collected based on a system developed around the animal's water station. It is concluded that the deployment of such systems in the cattle industry would aid animal managers and practitioners in the identification and management of BRD in cattle populations.
The role of the autonomic nervous system (ANS) in mediating eye temperature responses during painful procedures was examined in thirty 4-mo-old bull calves randomly assigned to 4 treatments: 1) sham handling control (C; n=8), 2) surgical castration (SC; n=6), 3) local anesthesia with sham handling (LAC; n=8), and 4) local anesthesia with surgical castration (LASC; n=8). Maximum eye temperature ( degrees C), measured by infrared thermography, heart rate (HR), and heart rate variability (HRV) were recorded continuously from 25 min before to 20 min after castration. The HRV was analyzed by examining segments of 512 interbeat intervals before and after treatments and comparing the root mean square of successive differences (RMSSD), high and low frequency (HF and LF, respectively) power, and the ratio of LF and HF powers (LF:HF). Jugular blood samples were analyzed for norepinephrine and epinephrine in C and SC treatments and for cortisol during all treatments. There was an immediate increase in HR following castration in SC (+15.3+/-2.8 beats/min) and LASC (+6.3+/-2.4 beats/min) calves. Eye temperature increased during the 20-min observation period in SC and LASC calves (+0.47+/-0.05 degrees C and +0.28+/-0.05 degrees C, respectively), and there was a small increase in C calves (+0.10+/-0.05 degrees C). Following castration in SC calves, there was an increase in RMSSD (+25.8+/-6.4) and HF power (+11.0+/-6.5) and LF:HF decreased (-2.1+/-0.7). Following castration in LASC, there was an increase in RMSSD (+18.1+/-4.9) and a decrease in LF power (-10.2+/-5.0). Cortisol increased above baseline within 15 min following treatment in both castrated groups, but was greater for SC calves (+18.4+/-2.3 ng/mL) than for LASC calves (+11.1+/-1.9 ng/mL). After castration, norepinephrine increased 3-fold and epinephrine increased by half in SC calves but not in C calves. There were no changes in HR, HRV, or cortisol responses to C or LAC treatments. Local anesthetic reduced, but did not eliminate, responses to surgical castration. The synchronized increase in catecholamine and HR responses immediately following SC treatment suggests the initial response was mediated by the sympathetic branch of the ANS. The subsequent changes in RMSSD, HF power, and LF:HF ratio indicated this was followed by an increase in parasympathetic activity. The use of HR, HRV, and infrared thermography measurements together provide a noninvasive means to assess ANS responses as indicators of acute pain in cattle.
This study examined the effects of a nonsteroidal antiinflammatory agent (NSAID) on physiological responses of calves immediately after hot-iron dehorning (DH) and during the time that local anesthetic (LA) wears off (2 to 3 h) after this procedure. Forty-six calves (33 +/- 0.3 d of age) were randomly assigned to 6 treatments: hot-iron DH versus sham DH with either no pain mitigation, LA alone, or LA with NSAID (i.v. Meloxicam). Eye temperature (measured using infrared thermography) was recorded every 5 min for 3 h after treatments. Heart rate (HR) and heart rate variability (HRV) were recorded continuously; for analysis of HRV, short segments of 512 interbeat intervals were examined. After DH without LA or NSAID, HR increased by 35 +/- 3.0 beats/min in the first 5 min and remained elevated above baseline for 3 h. The HRV around the time of DH did not differ between treatments; however, the root mean square of successive differences decreased from 68 to 41 +/- 12.6 ms immediately following DH without pain relief, suggesting a decrease in vagal tone at this time. Between 2 and 3 h following DH with LA, there was a decrease in eye temperature (-0.6 +/- 0.1 degrees C), an increase in HR (8 +/- 3.0 beats per min) and changes in HRV. Changes in HRV at this time included a decreased high-frequency power and an increase in the low-frequency power and low-frequency/high-frequency ratio, indicating a change in sympatho-vagal balance. The changes in eye temperature, HR, and HRV between 2 and 3 h following DH with LA indicated the onset of pain coinciding with the time that the LA effects wear off. In addition, this study demonstrated that the combination of LA and NSAID mitigated the onset of pain responses when the LA wanes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.