Holoprosencephaly (HPE) is the most common malformation of the prosencephalon in humans. It is characterized by a continuum of structural brain anomalies resulting from the failure of midline cleavage of the prosencephalon. The three classic subtypes of HPE are alobar, semilobar and lobar, although a few additional categories have been added to this original classification. The severity of the clinical phenotype is broad and usually mirrors the radiologic and associated facial features. The etiology of HPE includes both environmental and genetic factors. Disruption of sonic hedgehog (SHH) signaling is the main pathophysiologic mechanism underlying HPE. Aneuploidies, chromosomal copy number variants and monogenic disorders are identified in a large proportion of HPE patients. Despite the high postnatal mortality and the invariable presence of developmental delay, recent advances in diagnostic methods and improvements in patient management over the years have helped to increase survival rates. In this review, we provide an overview of the current knowledge related to HPE, and discuss the classification, clinical features, genetic and environmental etiologies and management.
Global Developmental Delay (GDD) and Intellectual Disability (ID) are two of the most common presentations encountered by physicians taking care of children. GDD/ID is classified into non-syndromic GDD/ID, where GDD/ID is the sole evident clinical feature, or syndromic GDD/ID, where there are additional clinical features or co-morbidities present. Careful evaluation of children with GDD and ID, starting with detailed history followed by a thorough examination, remain the cornerstone for etiologic diagnosis. However, when initial history and examination fail to identify a probable underlying etiology, further genetic testing is warranted. In recent years, genetic testing has been shown to be the single most important diagnostic modality for clinicians evaluating children with non-syndromic GDD/ID. In this review, we discuss different genetic testing currently available, review common underlying copy-number variants and molecular pathways, explore the recent evidence and recommendations for genetic evaluation and discuss an approach to the diagnosis and management of children with non-syndromic GDD and ID.
Background: The term Pontocerebellar Hypoplasia (PCH) was initially used to designate a heterogeneous group of fetal-onset genetic neurodegenerative disorders. As a descriptive term, PCH refers to pons and cerebellum of reduced volume. In addition to the classic PCH types, many other disorders can result in a similar imaging appearance.Objective: To review imaging, clinical and genetic features and underlying etiologies of a cohort of children with PCH on imaging.Methods: We systematically reviewed brain images and clinical charts of 38 patients with radiologic evidence of PCH.Results: Our cohort included 21 males and 17 females, with ages ranging between 8 days to 15 years. All individuals had pons and cerebellar vermis hypoplasia, and 63% had cerebellar hemisphere hypoplasia. Supratentorial anomalies were found in 71%. An underlying etiology was identi ed in 65% and included chromosomal (21%), monogenic (34%) and acquired (10%) causes. Only one patient had pathogenic variants in a "classic" PCH gene. Outcomes were poor regardless of etiology, though no one had regression. Approximately one third of patients deceased at a median age of 8 months. All individuals had global developmental delay, 50% were non-verbal, 64% were non-ambulatory and 45% required gastrostomy feeding. Conclusion:Radiologic PCH has heterogenous etiologies and the "classic" PCH genes underlie only a minority of cases. Broad genetic testing, including chromosomal microarray and exome or multigene panels, is recommended in individuals with PCH-like imaging appearance. Our results strongly suggest that the term PCH should be used to designate radiologic ndings, and not to imply neurogenerative disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.