Electricity, being the most efficient secondary energy, contributes for a larger proportion of overall energy usage. Due to a lack of storage for energy resources, over supply will result in energy dissipation and substantial investment waste. Accurate electricity consumption prediction is vital because it allows for the preparation of potential power generation systems to satisfy the growing demands for electrical energy as well as: smart distributed grids, assessing the degree of socioeconomic growth, distributed system design, tariff plans, demand-side management, power generation planning, and providing electricity supply stability by balancing the amount of electricity produced and consumed. This paper proposes a medium-term prediction model that can predict electricity consumption for a given location in Saudi Arabia. Hence, this study implemented a standalone Artificial Neural Network (ANN) model and bagging ensemble for predicting total monthly electricity consumption in 18 locations across Saudi Arabia. The dataset used in this research is gathered exclusively from the Saudi Electric Company. The pre-processing phase included normalizing the data using min-max method and mapping the cyclical attribute to its sine and cosine facets. The number of neurons and learning rate of the standalone model were optimized using hyperparameter tuning. Finally, the standalone model was tested against the bagging ensemble using the optimized ANN. The bagging ensemble with an optimized ANN as the chosen classifier outperformed the standalone ANN model. The results for the proposed model produced 0.9116 Correlation Coefficient (CC), 0.2836 Mean Absolute Percentage Error (MAPE), 0.4578, Root Mean Squared Percentage Error (RMSPE), 0.0298 MAE, and 0.069 Root Mean Squared Error (RMSE), respectively.
Electricity is widely regarded as the most adaptable form of energy and a major secondary energy source. However, electricity is not economically storable; therefore, the power system requires a continuous balance of electricity production and consumption to be stable. The accurate and reliable assessment of electrical energy consumption enables planning prospective power-producing systems to satisfy the expanding demand for electrical energy. Since Saudi Arabia is one of the top electricity consumers worldwide, this paper proposed an electricity consumption prediction model in Saudia Arabia. In this work, the authors obtained a never-before-seen dataset of Saudi Arabia’s electricity consumption for a span of ten years. The dataset was acquired solely by the authors from the Saudi Electrical Company (SEC), and it has further research potential that far exceeds this work. The research closely examined the performance of ensemble models and the K* model as novel models to predict the monthly electricity consumption for eighteen service offices from the Saudi Electrical Company dataset, providing experiments on a new electricity consumption dataset. The global blend parameters for the K* algorithm were tuned to achieve the best performance for predicting electricity consumption. The K* model achieved a high accuracy, and the results of the correlation coefficient (CC), mean absolute percentage error (MAPE), root mean squared percentage error (RMSPE), mean absolute error (MAE), and root mean squared error (RMSE) were 0.9373, 0.1569, 0.5636, 0.016, and 0.0488, respectively. The obtained results showed that the bagging ensemble model outperformed the standalone K* model. It used the original full dataset with K* as the base classifier, which produced a 0.9383 CC, 0.1511 MAPE, 0.5333 RMSPE, 0.0158 MAE, and 0.0484 RMSE. The outcomes of this work were compared with a previous study on the same dataset using an artificial neural network (ANN), and the comparison showed that the K* model used in this study performed better than the ANN model when compared with the standalone models and the bagging ensemble.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.