Recently, the sudden outbreak of the COVID-19 virus caused a major health crisis by affecting masses around the world. The virus, which is known to be highly contagious, has forced the research community and governments to fight the disease and take prompt actions by applying various strategies to keep the numbers under control. These strategies range from imposing strict social distancing measures, isolating infected cases, and enforcing either a partial or a full lockdown, to mathematical modeling and contact-tracing applications. In this work, we survey the current contact-tracing apps and organize them based on underlying technologies such as Bluetooth, Wi-Fi, GPS, geofencing, and Quick Response (QR) codes. We compare the main features of 22 existing applications and highlight each of the pros and cons associated with these different technologies.
A secure spatial domain, hybrid watermarking technique for obtaining watermark (authentication information) robustness and fragility of the host medical image (content integrity) using product codes, chaos theory, and residue number system (RNS) is proposed. The proposed scheme is highly fragile and unrecoverable in terms of the host image, but it is significantly robust and recoverable in terms of the watermark. Altering the medical image may result in misdiagnosis, hence the watermark that may contain patient information and organization logo must be protected against certain attacks. The host medical image is separated into two parts, namely, the region of interest (ROI) and region of noninterest (RONI) using a rectangular region. The RONI part is used to embed the watermark information. Moreover, two watermarks are used: one to achieve authenticity of image and the other to achieve the robustness against both incidental and malicious attacks. Effectiveness in terms of security, robustness, and fragility of the proposed scheme is demonstrated by the simulations and comparison with the other state-of-the-art techniques.
COVID-19 turned out to be an infectious and life-threatening viral disease, and its swift and overwhelming spread has become one of the greatest challenges for the world. As yet, no satisfactory vaccine or medication has been developed that could guarantee its mitigation, though several efforts and trials are underway. Countries around the globe are striving to overcome the COVID-19 spread and while they are finding out ways for early detection and timely treatment. In this regard, healthcare experts, researchers and scientists have delved into the investigation of existing as well as new technologies. The situation demands development of a clinical decision support system to equip the medical staff ways to timely detect this disease. The state-of-the-art research in Artificial intelligence (AI), Machine learning (ML) and cloud computing have encouraged healthcare experts to find effective detection schemes. This study aims to provide a comprehensive review of the role of AI & ML in investigating prediction techniques for the COVID-19. A mathematical model has been formulated to analyze and detect its potential threat. The proposed model is a cloud-based smart detection algorithm using support vector machine (CSDC-SVM) with cross-fold validation testing. The experimental results have achieved an accuracy of 98.4% with 15-fold cross-validation strategy. The comparison with similar state-of-the-art methods reveals that the proposed CSDC-SVM model possesses better accuracy and efficiency.
With the continuous increase in Internet of Things (IoT) device usage, more interest has been shown in internet security, specifically focusing on protecting these vulnerable devices from malicious traffic. Such threats are difficult to distinguish, so an advanced intrusion detection system (IDS) is becoming necessary. Machine learning (ML) is one of the promising techniques as a smart IDS in different areas, including IoT. However, the input to ML models should be extracted from the IoT environment by feature extraction models, which play a significant role in the detection rate and accuracy. Therefore, this research aims to introduce a study on ML-based IDS in IoT, considering different feature extraction algorithms with several ML models. This study evaluated several feature extractors, including image filters and transfer learning models, such as VGG-16 and DenseNet. Additionally, several machine learning algorithms, including random forest, K-nearest neighbors, SVM, and different stacked models were assessed considering all the explored feature extraction algorithms. The study presented a detailed evaluation of all combined models using the IEEE Dataport dataset. Results showed that VGG-16 combined with stacking resulted in the highest accuracy of 98.3%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.