The idea of a smart home is getting attention for the last few years. The key challenges in a smart home are intelligent decision making, secure identification, and authentication of the IoT devices, continuous connectivity, data security, and privacy issues. The existing systems are targeting one or two of these issues whereas a smart home automation system that is not only secure but also has intelligent decision making and analytical abilities is the need of time. In this paper, we present a novel idea of a smart home that uses a machine learning algorithm (Support Vector Machine) for intelligent decision making and also uses blockchain technology to ensure identification and authentication of the IoT devices. Emerging blockchain technology plays a vital role by providing a reliable, secure, and decentralized mechanism for identification and authentication of the IoT devices used in the proposed home automation system. Moreover, the SVM classifier is applied to classify the status of devices used in the proposed smart home automation system into one of the two categories, i.e., “ON” and “OFF.” This system is based on Raspberry Pi, 5 V relay circuit, and some sensors. A mobile application is developed using the Android platform. Raspberry Pi acting as the server maintains the database of each appliance. The HTTP web interface and apache server are used for communication among the Android app and Raspberry Pi. The proposed idea is tested in the lab and real life to validate its effectiveness and usefulness. It is also ensured that the hardware and technology used in the proposed idea are cheap, easily available, and replicable. The experimental results highlight its significance and validate the proof of the concept.
Brain Hemorrhage is the eruption of the brain arteries due to high blood pressure or blood clotting that could be a cause of traumatic injury or death. It is the medical emergency in which a doctor also need years of experience to immediately diagnose the region of the internal bleeding before starting the treatment. In this study, the deep learning models Convolutional Neural Network (CNN), hybrid models CNN+LSTM and CNN+GRU are proposed for the Brain Hemorrhage classification. The 200 head CT scan images dataset is used to boost the accuracy rate and computational power of the deep learning models. The major aim of this study is to use the abstraction power of deep learning on a set of fewer images because in most crucial cases extensive datasets are not available on the spot. The image augmentation and imbalancing the dataset methods are adopted with CNN model to design a unique architecture and named as Brain Hemorrhage Classification based on Neural Network (BHCNet). The performance of the proposed approach are analyzed in terms of accuracy, precision, sensitivity, specificity and F1-score. Further, the experimental results are evaluated by comparative analyses of the balanced and imbalanced dataset with CNN, CNN+LSTM and CNN+GRU models. The promising results are achieved with CNN by imbalancing the dataset and gain highest accuracy that outperforms the hybrid CNN+LSTM and CNN+GRU models. The results reveals the effectiveness of the proposed model for accurate prediction to save the life of the patient in the meantime and fast employment in the real life scenario.
Coronaviruses are a family of viruses that can be transmitted from one person to another. Earlier strains have only been mild viruses, but the current form, known as coronavirus disease 2019 (COVID-19), has become a deadly infection. The outbreak originated in Wuhan, China, and has since spread worldwide. The symptoms of COVID-19 include a dry cough, sore throat, fever, and nasal congestion. Antimicrobial drugs, pathogen-host interaction, and 2 weeks of isolation have been recommended for the treatment of the infection. Safe operating procedures, such as the use of face masks, hand sanitizer, handwashing with soap, and social distancing, are also suggested. Moreover, travel bans for cities, states, and countries have been put in place, along with lockdowns to control the outbreak. Travel restrictions, mask use, sanitizer or soap use, and avoidance of touching the face and nose have produced encouraging results, whereas the effectiveness of antibiotics has not been proved. The results of isolation for the recovery of infected people have also been promising. Travel bans and lockdowns have caused a slump in economies, and unemployment has risen sharply, resulting in an increase in mental health cases globally. To date, vaccines have been developed and are in use in certain countries, but following standard operating procedures remain critical. The countries following the guidelines can eradicate this virus. New Zealand was the rst country to eliminate the virus from their territory.
An intrusion detection system serves as the backbone for providing high-level network security. Different forms of network attacks have been discovered and they continue to become gradually more sophisticated and complicated. With the wide use of internet-based applications, cyber security has become an important research area. Despite the availability of many existing intrusion detection systems, intuitive cybersecurity systems are needed due to alarmingly increasing intrusion attacks. Furthermore, with new intrusion attacks, the efficacy of existing systems depletes unless they evolve. The lack of real datasets adds further difficulties to properly investigating this problem. This study proposes an intrusion detection approach for the modern network environment by considering the data from satellite and terrestrial networks. Incorporating machine learning models, the study proposes an ensemble model RFMLP that integrates random forest (RF) and multilayer perceptron (MLP) for increasing intrusion detection performance. For analyzing the efficiency of the proposed framework, three different datasets are used for experiments and validation, namely KDD-CUP 99, NSL-KDD, and STIN. In addition, performance comparison with state-of-the-art models is performed which suggests that the RFMLP can detect intrusion attacks with high accuracy than the existing approaches.
COVID-19 turned out to be an infectious and life-threatening viral disease, and its swift and overwhelming spread has become one of the greatest challenges for the world. As yet, no satisfactory vaccine or medication has been developed that could guarantee its mitigation, though several efforts and trials are underway. Countries around the globe are striving to overcome the COVID-19 spread and while they are finding out ways for early detection and timely treatment. In this regard, healthcare experts, researchers and scientists have delved into the investigation of existing as well as new technologies. The situation demands development of a clinical decision support system to equip the medical staff ways to timely detect this disease. The state-of-the-art research in Artificial intelligence (AI), Machine learning (ML) and cloud computing have encouraged healthcare experts to find effective detection schemes. This study aims to provide a comprehensive review of the role of AI & ML in investigating prediction techniques for the COVID-19. A mathematical model has been formulated to analyze and detect its potential threat. The proposed model is a cloud-based smart detection algorithm using support vector machine (CSDC-SVM) with cross-fold validation testing. The experimental results have achieved an accuracy of 98.4% with 15-fold cross-validation strategy. The comparison with similar state-of-the-art methods reveals that the proposed CSDC-SVM model possesses better accuracy and efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.