Abstract. In practice, identification of criminal in Malaysia is done through thumbprint identification. However, this type of identification is constrained as most of criminal nowadays getting cleverer not to leave their thumbprint on the scene. With the advent of security technology, cameras especially CCTV have been installed in many public and private areas to provide surveillance activities. The footage of the CCTV can be used to identify suspects on scene. However, because of limited software developed to automatically detect the similarity between photo in the footage and recorded photo of criminals, the law enforce thumbprint identification. In this paper, an automated facial recognition system for criminal database was proposed using known Principal Component Analysis approach. This system will be able to detect face and recognize face automatically. This will help the law enforcements to detect or recognize suspect of the case if no thumbprint present on the scene. The results show that about 80% of input photo can be matched with the template data.
The idea of a smart home is getting attention for the last few years. The key challenges in a smart home are intelligent decision making, secure identification, and authentication of the IoT devices, continuous connectivity, data security, and privacy issues. The existing systems are targeting one or two of these issues whereas a smart home automation system that is not only secure but also has intelligent decision making and analytical abilities is the need of time. In this paper, we present a novel idea of a smart home that uses a machine learning algorithm (Support Vector Machine) for intelligent decision making and also uses blockchain technology to ensure identification and authentication of the IoT devices. Emerging blockchain technology plays a vital role by providing a reliable, secure, and decentralized mechanism for identification and authentication of the IoT devices used in the proposed home automation system. Moreover, the SVM classifier is applied to classify the status of devices used in the proposed smart home automation system into one of the two categories, i.e., “ON” and “OFF.” This system is based on Raspberry Pi, 5 V relay circuit, and some sensors. A mobile application is developed using the Android platform. Raspberry Pi acting as the server maintains the database of each appliance. The HTTP web interface and apache server are used for communication among the Android app and Raspberry Pi. The proposed idea is tested in the lab and real life to validate its effectiveness and usefulness. It is also ensured that the hardware and technology used in the proposed idea are cheap, easily available, and replicable. The experimental results highlight its significance and validate the proof of the concept.
Images (typically JPEG) are used as evidence against cyber perpetrators. Typically the file is carved using standard patterns. Many concentrate on carving JPEG files and overlook the important of thumbnail in assisting forensic investigation. However, a new unique pattern is used to detect thumbnail/s and embedded JPEG file. This paper is to introduce a tool call PattrecCarv to recognize thumbnail/s or embedded JPEG files using unique hex patterns (UHP). A tool called PattrecCarv is developed to automatically carve thumbnail/s and embedded JPEG files using DFRWS 2006 and DFRWS 2007 datasets. The tool successfully recovers 11.5% more thumbnails and embedded JPEG files than PredClus
Developments in drones have opened new trends and opportunities in different fields, particularly in small drones. Drones provide interlocation services for navigation, and this interlink is provided by the Internet of Things (IoT). However, architectural issues make drone networks vulnerable to privacy and security threats. It is critical to provide a safe and secure network to acquire desired performance. Small drones are finding new paths for progress in the civil and defense industries, but also posing new challenges for security and privacy as well. The basic design of the small drone requires a modification in its data transformation and data privacy mechanisms, and it is not yet fulfilling domain requirements. This paper aims to investigate recent privacy and security trends that are affecting the Internet of Drones (IoD). This study also highlights the need for a safe and secure drone network that is free from interceptions and intrusions. The proposed framework mitigates the cyber security threats by employing intelligent machine learning models in the design of IoT-aided drones by making them secure and adaptable. Finally, the proposed model is evaluated on a benchmark dataset and shows robust results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.