The X-ray crystal structure of l-aspartate ammonia-lyase has been determined to 2.8 A resolution. The enzyme contains three domains, and each domain is composed almost completely of alpha helices. The central domain is composed of five long helices. In the tetramer, these five helices form a 20-helix cluster. Such clusters have also been seen in delta-crystallin and in fumarase. The active site of aspartase has been located in a region that contains side chains from three different subunits. The structure of the apoenzyme has made it possible to identify some of the residues that are involved in binding the substrate. These residues have been examined by site-directed mutagenesis, and their putative roles have been assigned [Jayasekera, M. M. K., Shi, W., Farber, G. K., & Viola, R. E. (1997) Biochemistry 36, 9145-9150].
The high-resolution structure of l-aspartate ammonia-lyase from Escherichia coli has recently been determined [Shi, W., Dunbar, J., Jayasekera, M. M. K., Viola, R. E., & Farber, G. K. (1997) Biochemistry 36, 9136-9144]. An examination of the putative active site has been carried out, with the active site located in a cleft that contains the functionally significant lysine 327. A list of potential active site residues has been generated based on their proximity to this active site lysine, sequence homology comparisons with other members of the aspartase-fumarase enzyme family, and the necessity for chemically reasonable functionalities for the proposed roles. The five most likely candidates in the putative active site cleft have been examined by site-directed mutagenesis to test their feasibility for either substrate binding or acid-base catalytic roles. Arginine and lysine residues have been identified that appear to function in the orientation and binding of aspartic acid at the enzyme active site. Some tentative assignments have also been made of the acid and base catalytic groups that are proposed to be involved in the deamination reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.