Objective Mucoepidermoid carcinoma (MEC) is the most common malignant tumor of the salivary glands. Tumor stage and grade have historically been important predictors of survival. An oncogenic CRTC1- or CRTC3-MAML2 gene fusion has been identified in a number of MECs. Historically, these gene fusions have been associated with lower grade tumors and better survival. However, reported gene fusion rates and prognosis varies widely across studies, and have not controlled for tumor grade. We sought to identify gene fusion rates and outcomes in our cohort of MEC patients. Materials and Methods An IRB-approved retrospective cohort of patients with MEC was identified at the University of Michigan. Clinical, histologic, and outcome data was collected from medical records. RNA was isolated from formalin fixed paraffin-embedded tumor sections, and qRT-PCR was performed to identify CRTC1/3-MAML2 gene fusions. Sanger sequencing of qRT-PCR products was used to confirm gene fusions. Results Overall, 90 patient MEC tumors were collected (58 low-grade, 25 intermediate-grade, and 7 high-grade). Gene fusions were identified in 59% (53/90) of tumors. On univariate and bivariate analysis, fusion status did not significantly associate with grade or survival. Conclusion We have identified a high rate of CRTC1/3-MAML2 gene fusions in a large cohort of MEC. We do not identify any correlation between fusion status with tumor grade or survival. These findings suggest further characterization of MECs is needed before considering the CRTC1/3-MAML2 gene fusion as a prognostic biomarker. Additional genetic drivers may account for survival and grade in MECs.
Shifts in the composition of gut bacterial populations can alter host metabolism and may contribute to the pathogenesis of metabolic disorders, including obesity. Mice deficient in leptin action are obese with altered microbiota and increased susceptibility to certain intestinal pathogens. Because antimicrobial peptides (AMPs) secreted by Paneth cells represent a major mechanism by which the host influences the gut microbiome, we examined the mRNA expression of gut AMPs, several of which were decreased in leptin receptor (LepR)-deficient db/db mice, suggesting a potential role for AMP modulation of microbiota composition. To address the extent to which the alterations in gut microbiota and AMP mRNA expression in db/db mice result from increased food intake vs other defects in leptin action, we examined the effects of pair feeding and gut epithelial LepRb ablation on AMP mRNA expression and microbiota composition. We found that the phylum-level changes in fecal microbial content and AMP gene expression persist in pair-fed db/db mice, suggesting that these differences do not stem from hyperphagia alone. In addition, despite recent evidence to support a role for intestinal epithelial LepRb signaling in pathogen susceptibility, ablation of LepRb from the intestinal epithelium fails to alter body weight, composition of the microbiota, or AMP expression, suggesting a role for LepRb elsewhere for this regulation. Indeed, gut LepRb cells are not epithelial but rather constitute a previously uncharacterized population of perivascular cells within the intestinal submucosa. Overall, our data reveal a role for LepRb signaling extrinsic to the intestinal epithelium and independent of food intake in the control of the gut microbiome.
Importance HER2 is an important drug target in breast cancer, where anti-HER2 therapy has been shown to lead to improvements in disease recurrence and overall survival. HER2 status in head and neck squamous cell carcinoma (HNSCC) has not been well studied. Identification of HER2 positive tumors and characterization of response to HER2 therapy could lead to targeted treatment options in HNSCC. Objective To identify HER2 aberrations in HNSCCs and investigate potential for HER2 targeted therapy in HNSCCs. Design, Setting, and Participants Retrospective case series of patients with laryngeal and oral cavity SCC enrolled in the University of MichiganSPORE. Publically available sequencing data(TCGA) was reviewed to identify additional mutations and overexpression in HER2 in HNSCC. Established HNSCC cell lines were used for follow-up in vitro analysis. Interventions Using targeted, amplicon-based sequencing with the Oncomine Cancer Panel, we assessed the copy number and mutation status of commonly altered genes in HNSCCs. Immunohistochemical staining was performed on tissue microarrays of HNSCCs to assess expression of HER2. Western blotting for HNSCC cell line HER2 expression, and cell survival assays after treatment with HER2 inhibitors were performed. Main Outcomes and Measures Prevalence of HER2 genetic aberrations and HER2 overexpression in laryngeal and oral cavity squamous cell carcinomas (SCCs). Prevalence of HER2 aberrations in HNSCC in TCGA. HER2 protein expression in HNSCC cell lines. Response of HNSCC cell lines to targeted HER2 inhibitors. Results Forty-two laryngeal SCC samples were screened by targeted sequencing, of which 4 were positive for HER2 amplification. Two samples identified with sequencing showed HER2 overexpression on immunohistochemistry. Two of 94 oral cavity SCC samples were positive for HER2 on immunohistochemistry. Analysis of 288 patients from publicly available HNSCC sequencing data revealed 9 amplifications in HER2. Protein expression was variable across HNSCC cell lines, and a subset of these cell lines show responsiveness to anti-HER2 therapy. Conclusions and Relevance HER2 aberrations are identified in a subset of HNSCCs. These tumors may be responsive to targeted therapy against HER2. Screening for HER2 aberrations and applying targeted therapy in HER2 positive patients may provide a useful tool for personalized therapy trials, particularly in patients that are refractory to current treatment paradigms.
Objectives: We sought to describe the genetic complexity of 14 UM-SCC oral cavity cancer cell lines that have remained uncharacterized despite being used as model systems for decades. Materials and Methods: We performed exome sequencing on 14 oral cavity UM-SCC cell lines and denote the mutational profile of each line. We used a SNP array to profile the multiple copy number variations of each cell line and use immunoblotting to compare alterations to protein expression of commonly amplified genes (EGFR, PIK3CA, etc.). RNA sequencing was performed to characterize the expression of genes with copy number alterations. Results: The cell lines displayed a highly complex network of genetic aberrations that was consistent with alterations identified in the HNSCC TCGA project including PIK3CA amplification, CDKN2A deletion, as well as TP53 and CASP8 mutations, enabling genetic stratification of each cell line in the panel. Copy number FISH and spectral karyotyping analysis demonstrate that cell lines retain chromosomal heterogeneity. Conclusions: Collectively, we developed an important resource for future oral cavity HNSCC cell line studies and highlight the complexity of genomic aberrations in cell lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.