This paper tackles the problem of motion deblurring of dynamic scenes. Although end-to-end fully convolutional designs have recently advanced the state-of-the-art in non-uniform motion deblurring, their performance-complexity trade-off is still sub-optimal. Most existing approaches achieve a large receptive field by increasing the number of generic convolution layers and kernel size. In this work, we propose a pixel adaptive and feature attentive design for handling large blur variations across different spatial locations and process each test image adaptively. We design a content-aware global-local filtering module that significantly improves performance by considering not only global dependencies but also by dynamically exploiting neighboring pixel information. We further introduce a pixel-adaptive non-uniform sampling strategy that implicitly discovers the difficult-to-restore regions present in the image and, in turn, performs fine-grained refinement in a progressive manner. Extensive qualitative and quantitative comparisons with prior art on deblurring benchmarks demonstrate that our approach performs favorably against the state-of-the-art deblurring algorithms.
This paper reviews the AIM 2019 challenge on real world super-resolution. It focuses on the participating methods and final results. The challenge addresses the real world setting, where paired true high and low-resolution images are unavailable. For training, only one set of source input images is therefore provided in the challenge. In Track 1: Source Domain the aim is to super-resolve such images while preserving the low level image characteristics of the source input domain. In Track 2: Target Domain a set of high-quality images is also provided for training, that defines the output domain and desired quality of the superresolved images. To allow for quantitative evaluation, the source input images in both tracks are constructed using artificial, but realistic, image degradations. The challenge is the first of its kind, aiming to advance the state-of-the-art and provide a standard benchmark for this newly emerging task. In total 7 teams competed in the final testing phase, demonstrating new and innovative solutions to the problem.
Image relighting is attracting increasing interest due to its various applications. From a research perspective, image relighting can be exploited to conduct both image normalization for domain adaptation, and also for data augmentation. It also has multiple direct uses for photo montage and aesthetic enhancement. In this paper, we review the NTIRE 2021 depth guided image relighting challenge.We rely on the VIDIT dataset for each of our two challenge tracks, including depth information. The first track is on one-to-one relighting where the goal is to transform the illumination setup of an input image (color temperature and light source position) to the target illumination setup. In the second track, the any-to-any relighting challenge, the objective is to transform the illumination settings of the input image to match those of another guide image, similar to style transfer. In both tracks, participants were given depth information about the captured scenes. We had nearly 250 registered participants, leading to 18 confirmed team submissions in the final competition stage. The competitions, methods, and final results are presented in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.