This paper reviews the second challenge on spectral reconstruction from RGB images, i.e., the recovery of wholescene hyperspectral (HS) information from a 3-channel RGB image. As in the previous challenge, two tracks were provided: (i) a "Clean" track where HS images are estimated from noise-free RGBs, the RGB images are themselves calculated numerically using the ground-truth HS images and supplied spectral sensitivity functions (ii) a "Real World" track, simulating capture by an uncalibrated and unknown camera, where the HS images are recovered from noisy JPEG-compressed RGB images. A new, larger-than-ever, natural hyperspectral image data set is presented, containing a total of 510 HS images. The Clean and Real World tracks had 103 and 78 registered participants respectively, with 14 teams competing in the final testing phase. A description of the proposed methods, alongside their challenge scores and an extensive evaluation of top performing methods is also provided. They gauge the state-of-the-art in spectral reconstruction from an RGB image. arXiv:2005.03412v1 [eess.IV] 7 May 2020
Deep convolutional neural networks (CNNs), trained on corresponding pairs of high-and low-resolution images, achieve state-of-the-art performance in single-image superresolution and surpass previous signal-processing based approaches. However, their performance is limited when applied to real photographs. The reason lies in their training data: low-resolution (LR) images are obtained by bicubic interpolation of the corresponding high-resolution (HR) images. The applied convolution kernel significantly differs from real-world camera-blur. Consequently, while current CNNs well super-resolve bicubic-downsampled LR images, they often fail on camera-captured LR images. To improve generalization and robustness of deep superresolution CNNs on real photographs, we present a kernel modeling super-resolution network (KMSR) that incorporates blur-kernel modeling in the training. Our proposed KMSR consists of two stages: we first build a pool of realistic blur-kernels with a generative adversarial network (GAN) and then we train a super-resolution network with HR and corresponding LR images constructed with the generated kernels. Our extensive experimental validations demonstrate the effectiveness of our single-image super-resolution approach on photographs with unknown blur-kernels.
In digital photography, two image restoration tasks have been studied extensively and resolved independently: demosaicing and super-resolution. Both these tasks are related to resolution limitations of the camera. Performing superresolution on a demosaiced images simply exacerbates the artifacts introduced by demosaicing. In this paper, we show that such accumulation of errors can be easily averted by jointly performing demosaicing and super-resolution. To this end, we propose a deep residual network for learning an end-to-end mapping between Bayer images and highresolution images. By training on high-quality samples, our deep residual demosaicing and super-resolution network is able to recover high-quality super-resolved images from low-resolution Bayer mosaics in a single step without producing the artifacts common to such processing when the two operations are done separately. We perform extensive experiments to show that our deep residual network achieves demosaiced and super-resolved images that are superior to the state-of-the-art both qualitatively and in terms of PSNR and SSIM metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.