The application of sintered calcium phosphate dental inserts in the central part of tooth cavities can reduce amount of embedded dental composite and polymerization shrinkage of final dental fillings. The aim of this study was to analyze comparatively physico‐chemical and mechanical properties of dental inserts and shear bond strength (SBS) between three dissimilar hydroxyapatite‐based dental inserts and different restorative materials, after application of different clinical protocols. Starting from two different hydroxyapatite nano powders and nanostructured stabilized zirconia (YSZ), monophasic two‐step sintered dense HAp inserts (TSSHAp), biphasic single‐step sintered controlled porous inserts (HAp/TCp), and single‐step sintered reinforced HAp/YSZ inserts were processed and characterized. Obvious differences in the microstructure of inserts surface were visualized after etching with 37% phosphoric acid. Fracture toughness of sintered inserts was ranged between 1.01 and 1.85 MPam1/2 (maximum value in the case of HAp/YSZ), while hardness values were in the range of 3.71–5.22 GPa (maximum value in the case of TSSHAp). Acid etching before application improved SBS between inserts and Maxcem compared to direct cement application. TSSHAp and HAP/TCp inserts showed comparable and relatively high SBS values, certainly higher compared to HAp/YSZ inserts. Slightly higher SBS values were measured in the case of TSSHAp insert group, and the highest mean SBS value of 18.51 MPa was determined between TSSHAp inserts and Filtek Z250_SBU following the “self‐etch” protocol.
Microtensile bond strength to dentin of universal adhesives appears more stable following the "self-etch" than "total-etch" protocol after long-term degradation. More clinically relevant data may be obtained using simulated pulpal pressure and cavity-type sample preparation in the study design.
The aim of this study was to investigate the possibility of modifying model BisGMA/TEGDMA dental composite by substituting 10 wt. % of conventional glass fillers with bioactive fillers based on calcinated nanosized hydroxyapatite (HAp) and Mg doped hydroxyapatite (Mg-HAp). HAp and Mg-HAp powders were synthesized hydrothermally. Mechanical properties: hardness by Vickers (HV) and flexural strength (Fs) were tested initially and after being stored for 28 days in simulated body fluid (SBF). The experimental composites with HAp and Mg-HAp particles showed no statistically significant difference in HV compared to the control (p>0.05) either initially or after storage. Although mean Fs values of modified composites tested initially were lower (62 MPa) than those of the control (72 MPa), after 28 days of storage in SBF Fs values were greater for modified composites (42 MPa control sample, 48 MPa HAp and Mg-HAp samples). In vitro bioactivity of BisGMA/TEGDMA composites with HAp and Mg-HAp particles after 28 days in SBF was not detected.
Keywords: hydroxyapatite; magnesium; dental composite; mechanical properties;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.