Stojkov NJ, Janjic MM, Bjelic MM, Mihajlovic AI, Kostic TS, Andric SA. Repeated immobilization stress disturbed steroidogenic machinery and stimulated the expression of cAMP signaling elements and adrenergic receptors in Leydig cells. Am J Physiol Endocrinol Metab 302: E1239 -E1251, 2012. First published February 28, 2012 doi:10.1152/ajpendo.00554.2011.-This study was designed to evaluate the effect of acute (2 h daily) and repeated (2 h daily for 2 or 10 consecutive days) immobilization stress (IMO) on: 1) the steroidogenic machinery homeostasis; 2) cAMP signaling; and the expression of receptors for main markers of 3) adrenergic and 4) glucocorticoid signaling in Leydig cells of adult rats. The results showed that acute IMO inhibited steroidogenic machinery in Leydig cells by downregulation of Scarb1 (scavenger receptor class B), Cyp11a1 (cholesterol side-chain cleavage enzyme), Cyp17a1 (17␣-hydroxylase/17,20 lyase), and Hsd17b3 (17-hydroxysteroid dehydrogenase) expression. In addition to acute IMO effects, repeated IMO increased transcription of Star (steroidogenic acute regulatory protein) and Arr19 (androgen receptor corepressor 19 kDa) in Leydig cells. In the same cells, the transcription of adenylyl cyclases (Adcy7, Adcy9, Adcy10) and cAMPspecific phosphodiesterases (Pde4a, Pde4b, Pde4d, Pde7a, Pde8a) was stimulated, whereas the expression of the genes encoding protein kinase A subunits were unaffected. Ten times repeated IMO increased the levels of all adrenergic receptors and -adrenergic receptor kinase (Adrbk1) in Leydig cells. The transcription analysis was supported by cAMP/testosterone production. In this signaling scenario, partial recovery of testosterone production in medium/content was detected. The physiological significance of the present results was proven by ex vivo application of epinephrine, which increased cAMP/testosterone production by Leydig cells from control rats in greater fashion than from stressed. IMO did not affect the expression of transcripts for Crhr1/Crhr2 (corticotropin releasing hormone receptors), Acthr (adrenocorticotropin releasing hormone receptor), Gr (glucocorticoid receptor), and Hsd11b1 [hydroxysteroid (11-) dehydrogenase 1], while all types of IMO stimulated the expression of Hsd11b2, the unidirectional oxidase with high affinity to inactivate glucocorticoids. Thus, presented data provide new molecular/transcriptional base for "fight/adaptation" of Leydig cells and new insights into the role of cAMP, epinephrine, and glucocorticoid signaling in recovery of stress-impaired Leydig cell steroidogenesis.
Anabolic androgenic steroids (AAS) are testosterone derivatives originally designed to enhance muscular mass and used for the treatment of many clinical conditions as well as in contraception. Despite popular interest and abuse, we still lack a broad understanding of effects of AAS on synthesis of steroid hormones on the molecular level. This study was designed to systematically analyze the effects of pharmacological/high doses of testosterone on steroidogenic machinery in Leydig cells. Two different experimental approaches were used: (1) In vivo experiment on groups of adult male rats treated with testosterone for 1 day, 2 weeks, and 2 months; (2) Direct in vitro testosterone treatment of Leydig cells isolated from intact rats. Result showed that prolonged in vivo treatment with testosterone decreased the expression of Scarb1 (scavenger receptor class B type 1), Tspo (translocator protein), Star (steroidogenic acute regulatory protein), Cyp11a1 (cholesterol side-chain cleavage enzyme), and Cyp17a1 (17α-hydroxylase/17, 20 lyase) in Leydig cells. Oppositely, the expression of Hsd3b (3-beta-hydroxysteroid dehydrogenase/delta-5-delta-4 isomerase), Ar (androgen receptor), and Pde4a/b (cyclic adenosine monophosphate-dependent phosphodiesterases) was increased. Androgenization for 2 weeks inhibited Cyp19 (aromatase) transcription, whereas 2-month exposure caused the opposite effect. Direct in vitro testosterone treatment also decreased the expression of Cyp11a1, Cyp17a1, and Cyp19a1, whereas Hsd3b was upregulated. The results of expression analysis were supported by declined steroidogenic capacity and activity of Leydig cells, although conversion of pregnenolone to progesterone was stimulated. The upregulation of AR and 3βHSD in testosterone-impaired Leydig cells steroidogenesis could be the possible mechanism that maintain and prevent loss of steroidogenic function.
Stojkov NJ, Janjic MM, Baburski AZ, Mihajlovic AI, Drljaca DM, Sokanovic SJ, Bjelic MM, Kostic TS, Andric SA. Sustained in vivo blockade of ␣ 1-adrenergic receptors prevented some of stresstriggered effects on steroidogenic machinery in Leydig cells. Am J Physiol Endocrinol Metab 305: E194 -E204, 2013. First published May 14, 2013 doi:10.1152/ajpendo.00100.2013.-This study was designed to systematically analyze and evaluate the effects of in vivo blockade of ␣ 1-adrenergic receptors (␣1-ADRs) on the stress-induced disturbance of steroidogenic machinery in Leydig cells. Parameters followed 1) steroidogenic enzymes/proteins, transcription factors, and cAMP/testosterone production; 2) the main hallmarks of stress (epinephrine, glucocorticoids); and 3) transcription profiles of ADRs and oxidases with high affinity to inactivate glucocorticoids. Results showed that sustained blockade of ␣ 1-ADRs prevented stress-induced 1) decrease of the transcripts/proteins for main steroidogenic CYPs (CYP11A1, CYP17A1); 2) decrease of Scarb1 and Hsd3b1 transcripts; 3) decrease of transcript for Nur77, one of the main activator of the steroidogenic expression; and 4) increase of Dax1 and Arr19, the main steroidogenic repressors in Leydig cells. In the same cells, the expression of steroidogenic stimulatory factor Creb1, StAR, and androgen receptor increased. In this signaling scenario, stress-induced stimulation of Adra1a/Adra1b/Adrbk1 and Hsd11b2 (the unidirectional oxidase with high affinity to inactivate glucocorticoids) was not changed. Blockade additionally stimulated stress-increased transcription of the most abundantly expressed ADRs Adra1d/Adrb1/Adrb2 in Leydig cells. In the same cells, stress-decreased testosterone production, the main marker of Leydig cells functionality, was completely prevented, while reduction of cAMP, the main regulator of androgenesis, was partially prevented. Accordingly, the presented data provide a new molecular/transcriptional base for "fight/adaptation" of steroidogenic cells and new molecular insights into the role of ␣1-ADRs in stress-impaired Leydig cell steroidogenesis. The results are important in term of wide use of ␣1-ADR selective antagonists, alone/in combination, to treat high blood pressure, nightmares associated with posttraumatic stress disorder, and disrupted sexual health. testosterone; stress; ␣1-adrenergic receptors; steroidogenic machinery; doxazosin TESTOSTERONE-PRODUCING LEYDIG CELLS, like all other steroidproducing cells, synthesize steroid hormones from common precursor cholesterol using the steroidogenic machinery (Fig. 1). This complex machinery is comprised of cholesterol transporters (50, 56, 71), steroidogenic enzymes (51), and many regulatory molecules (17,18,50,51,56,71) as well as numerous transcriptional factors controlling the expression of steroidogenic gene expression (33,40,69). The steroidogenic function of Leydig cells is predominantly regulated by pituitary luteinizing hormone (LH) or its placental counterpart, human chorionic gonadotropin (hCG). LH/hCG re...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.