Salvia officinalis L., also known as the “Salvation Plant”, has been long used and well-documented in traditional medicine around the globe. Its bioactive compounds, and especially its polyphenol profile, have been extensively researched and reviewed. However, sage’s beneficial effects reach much further, and nowadays, with a range of new extraction techniques, we are discovering new components with new therapeutic effects, especially in the context of neurodegenerative diseases and various carcinomas. This review describes the bioactive profile of various sage preparations depending on the extraction techniques and extraction parameters, and this review lists the newest research findings on its health effects.
Coumarin is a natural product with aromatic and fragrant characteristics, widespread in the entire plant kingdom. It is found in different plant sources such as vegetables, spices, fruits, and medicinal plants including all parts of the plants—fruits, roots, stems and leaves. Coumarin is found in high concentrations in certain types of cinnamon, which is one of the most frequent sources for human exposure to this substance. However, human exposure to coumarin has not been strictly determined, since there are no systematic measurements of consumption of cinnamon-containing foods. The addition of pure coumarin to foods is not allowed, since large amounts of coumarin can be hepatotoxic. However, according to the new European aroma law, coumarin may be present in foods only naturally or as a flavoring obtained from natural raw materials (as is the case with cinnamon). In this paper, the overview of the current European regulations on coumarin levels in food is presented, along with the most common coumarin food sources, with a special emphasis on cinnamon-containing food. Human exposure to coumarins in food is also reviewed, as well as the methods for determination and separation of coumarin and its derivatives in food.
The study of coumarin dates back to 1820 when coumarin was first extracted from tonka bean by Vogel. Compounds containing coumarin backbone are a very important group of compounds due to their usage in pharmacy and medicine. Properties and biological activities of coumarin derivatives have a significant role in the development of new drugs. Therefore, many different methods and techniques are developed in order to synthesize coumarin derivatives. Coumarin derivatives could be obtained from different starting materials with various methods but with big differences in yield. This review summarized various methods, techniques and reaction conditions for synthesis of coumarins from different compounds such as aldehydes, phenols, ketones and carboxylic acids.
Lipoxygenases are widespread enzymes that catalyze oxidation of polyunsaturated fatty acids (linoleic, linolenic, and arachidonic acid) to produce hydroperoxides. Lipoxygenase reactions can be desirable, but also lipoxygenases can react in undesirable ways. Most of the products of lipoxygenase reactions are aromatic compounds that can affect food properties, especially during long-term storage. Lipoxygenase action on unsaturated fatty acids could result in off-flavor/off-odor development, causing food spoilage. In addition, lipoxygenases are present in the human body and play an important role in stimulation of inflammatory reactions. Inflammation is linked to many diseases, such as cancer, stroke, and cardiovascular and neurodegenerative diseases. This review summarized recent research on plant families and species that can inhibit lipoxygenase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.