Biological responses to climate change have been widely documented across taxa and regions, but it remains unclear whether species are maintaining a good match between phenotype and environment, i.e. whether observed trait changes are adaptive. Here we reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant publications, to assess quantitatively whether phenotypic trait changes associated with climate change are adaptive in animals. A meta-analysis focussing on birds, the taxon best represented in our dataset, suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits. We demonstrate that these advances are adaptive for some species, but imperfect as evidenced by the observed consistent selection for earlier timing. Application of a theoretical model indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species.
In a broad range of species-including humans-it has been demonstrated that telomere length declines throughout life and that it may be involved in cell and organismal senescence. This potential link to ageing and thus to fitness has triggered recent interest in understanding how variation in telomere length is inherited and maintained. However, previous studies suffer from two main drawbacks that limit the possibility of understanding the relative importance of genetic, parental and environmental influences on telomere length variation. These studies have been based on (i) telomere lengths measured at different time points in different individuals, despite the fact that telomere length changes over life, and (ii) parent-offspring regression techniques, which do not enable differentiation between genetic and parental components of inheritance. To overcome these drawbacks, in our study of a songbird, the great reed warbler, we have analysed telomere length measured early in life in both parents and offspring and applied statistical models (so-called 'animal models') that are based on long-term pedigree data. Our results showed a significant heritability of telomere length on the maternal but not on the paternal side, and that the mother's age was positively correlated with their offspring's telomere length. Furthermore, the pedigree-based analyses revealed a significant heritability and an equally large maternal effect. Our study demonstrates strong maternal influence on telomere length and future studies now need to elucidate possible underlying factors, including which types of maternal effects are involved.
Recent technological advancements now allow us to obtain geographical position data for a wide range of animal movements. Here we used light-level geolocators to study the annual migration cycle in great reed warblers (Acrocephalus arundinaceus), a passerine bird breeding in Eurasia and wintering in sub-Saharan Africa. We were specifically interested in seasonal strategies in routes and schedules of migration. We found that the great reed warblers (all males, no females were included) migrated from the Swedish breeding site in early August. After spending up to three weeks at scattered stopover sites in central to south-eastern Europe, they resumed migration and crossed the Mediterranean Sea and Sahara Desert without lengthy stopovers. They then spread out over a large overwintering area and each bird utilised two (or even three) main wintering sites that were spatially separated by a distinct mid-winter movement. Spring migration initiation date differed widely between individuals (1-27 April). Several males took a more westerly route over the Sahara in spring than in autumn, and in general there were fewer long-distance travels and more frequent shorter stopovers, including one in northern Africa, in spring. The shorter stopovers made spring migration on average faster than autumn migration. There was a strong correlation between the spring departure dates from wintering sites and the arrival dates at the breeding ground. All males had a high migration speed in spring despite large variation in departure dates, indicating a time-minimization strategy to achieve an early arrival at the breeding site; the latter being decisive for high reproductive success in great reed warblers. Our results have important implications for the understanding of long-distance migrants’ ability to predict conditions at distant breeding sites and adapt to rapid environmental change.
BackgroundIn a rapidly changing world, it is of fundamental importance to understand processes constraining or facilitating adaptation through microevolution. As different traits of an organism covary, genetic correlations are expected to affect evolutionary trajectories. However, only limited empirical data are available.Methodology/Principal FindingsWe investigate the extent to which multivariate constraints affect the rate of adaptation, focusing on four morphological traits often shown to harbour large amounts of genetic variance and considered to be subject to limited evolutionary constraints. Our data set includes unique long-term data for seven bird species and a total of 10 populations. We estimate population-specific matrices of genetic correlations and multivariate selection coefficients to predict evolutionary responses to selection. Using Bayesian methods that facilitate the propagation of errors in estimates, we compare (1) the rate of adaptation based on predicted response to selection when including genetic correlations with predictions from models where these genetic correlations were set to zero and (2) the multivariate evolvability in the direction of current selection to the average evolvability in random directions of the phenotypic space. We show that genetic correlations on average decrease the predicted rate of adaptation by 28%. Multivariate evolvability in the direction of current selection was systematically lower than average evolvability in random directions of space. These significant reductions in the rate of adaptation and reduced evolvability were due to a general nonalignment of selection and genetic variance, notably orthogonality of directional selection with the size axis along which most (60%) of the genetic variance is found.ConclusionsThese results suggest that genetic correlations can impose significant constraints on the evolution of avian morphology in wild populations. This could have important impacts on evolutionary dynamics and hence population persistence in the face of rapid environmental change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.