Vitamin D3 has transcriptome- and genome-wide effects and activates, via the binding of its metabolite 1α,25-dihydroxyvitamin D3 to the transcription factor vitamin D receptor (VDR), several hundred target genes. Using samples from a 5-month vitamin D3 intervention study (VitDmet), we recently reported that the expression of 12 VDR target genes in peripheral blood mononuclear cells (PBMCs) as well as 12 biochemical and clinical parameters of the study participants are significantly triggered by vitamin D3. In this study, we performed a more focused selection of further 12 VDR target genes and demonstrated that changes of their mRNA expression in PBMCs of VitDmet subjects significantly correlate with alterations of 25-hydroxyvitamin D3 serum levels. Network and self-organizing map analysis of these datasets together with that of the other 24 parameters was followed by relevance calculations and identified changes in parathyroid hormone serum levels and the expression of the newly selected genes STS, BCL6, ITGAM, LRRC25, LPGAT1 and TREM1 as well as of the previously reported genes DUSP10 and CD14 as the most relevant parameters for describing vitamin D responsiveness in vivo. Moreover, parameter relevance ranking allowed the segregation of study subjects into high and low responders. Due to the long intervention period the vitamin D response was not too prominent on the level of transcriptional activation. Therefore, we performed in the separate VitDbol trial a short-term but high dose stimulation with a vitamin D3 bolus. In PBMCs of VitDbol subjects we observed direct transcriptional effects on the selected VDR target genes, such as an up to 2.1-fold increase already one day after supplementation onset. In conclusion, both long-term and short-term vitamin D3 supplementation studies allow monitoring the vitamin D responsiveness of human individuals and represent new types of human in vivo vitamin D3 investigations.
DNA methylation is an epigenetic modification essential for normal mammalian development. Initially associated with gene silencing, more diverse roles for DNA methylation in the regulation of gene expression patterns are increasingly being recognized. Some of these insights come from studying the function of genes that are mutated in human diseases characterized by abnormal DNA methylation landscapes. The first disorder to be associated with congenital defects in DNA methylation was Immunodeficiency, Centromeric instability, Facial anomalies syndrome (ICF). The hallmark of this syndrome is hypomethylation of pericentromeric satellite repeats, with mutations in four genes: DNMT3B, ZBTB24, CDCA7 and HELLS, being linked to the disease. Here, we discuss recent progress in understanding the molecular interactions between these genes and consider current evidence for how aberrant DNA methylation may contribute to the abnormal phenotype present in ICF syndrome patients.
Agammaglobulinemia is the most profound primary antibody deficiency that can occur due to an early termination of B-cell development. We here investigated three novel patients, including the first known adult, from unrelated families with agammaglobulinemia, recurrent infections, and hypertrophic cardiomyopathy (HCM). Two of them also presented with intermittent or severe chronic neutropenia. We identified homozygous or compound heterozygous variants in the gene for Folliculin interacting protein 1 (FNIP1), leading to loss of the FNIP1 protein. B-cell metabolism, including mitochondrial numbers and activity and PI3K/AKT pathway, was impaired. These defects recapitulated the Fnip1-/- animal model. Moreover, we identified either uniparental disomy or copy number variants [CNV] in two patients, expanding the variant spectrum of this novel inborn error of immunity. The results indicate that FNIP1 deficiency can be caused by complex genetic mechanisms and support the clinical utility of exome sequencing and CNV analysis in patients with broad phenotypes, including agammaglobulinemia and HCM. FNIP1 deficiency is a novel inborn error of immunity characterized by early and severe B-cell development defect, agammaglobulinemia, variable neutropenia, and HCM. Our findings elucidate a functional and relevant role of FNIP1 in B-cell development and metabolism and potentially neutrophil activity.
It has become clear that in addition to the DNA sequence there is another layer of information, termed epigenetic modifications, that can influence phenotypes and traits. In particular, environmental epigenomics, which addresses the effect of the environment on the epigenome and human health, is becoming an area of great interest for many researchers working in different scientific fields. In this review, we will consider the current evidence that early-life environmental signals can have long-term effects on the epigenome. We will further evaluate how recent technological advances may enable us to unravel the molecular mechanisms underlying these phenomena, which will be crucial for understanding heritability in health and disease. This article is part of the theme issue ‘Developing differences: early-life effects and evolutionary medicine'.
DNA methylation is a key epigenetic modification essential for normal development. How particular factors control DNA methylation patterns and activity of a given locus is incompletely understood. The zinc finger protein Zbtb24 has been implicated in transcriptional activation/repression and the DNA methylation maintenance pathway. Here, using whole genome bisulfite sequencing in mouse embryonic stem cells, we report that besides a general trend towards DNA hypomethylation, many genomic sites gain methylation in the absence of Zbtb24 and they include promoters of actively transcribed genes. DNA hypomethylation is not generally associated with gene expression changes, suggesting that additional epigenetic safeguards are in place that ensure silencing of the affected loci. Remarkably, we identify a set 2 of genes that is particularly susceptible to Zbtb24 occupancy. At these sites, Zbtb24 binding is not only required for gene activity but also required for maintaining the unmethylated state of the promoter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.