Zinc-finger protein 217 (ZNF217) is a Kruppel-like zincfinger protein located at 20q13.2, within a region of recurrent maximal amplification. Here, we demonstrate that ZNF217 is a transcriptional repressor protein and report the purification and characterization of a ZNF217 complex. The purified ZNF217 complex consists of approximately six proteins and contains the transcriptional co-repressors CoREST, BHC110/LSD1, histone deacetylase (HDAC) 2 and C-terminal binding protein (CtBP1). The purified ZNF217 complex possesses deacetylase activity as well as lysine 4 histone H3-specific demethylase activity that is most likely mediated by the BHC110/LSD1 component. To determine if ZNF217 is a sequence-specific binding protein, we have made use of cyclic amplification and selection of targets (CAST) assay and identify for the first time a ZNF217 DNA consensus recognition sequence (CRS) that is highly conserved in the human E-cadherin promoter. Chromatin immunoprecipitation (ChIP) experiments demonstrate that ZNF217, as well as the other components of the ZNF217 complex, are found on the region of the proximal E-cadherin promoter that contains the identified ZNF217 CRS in vivo. Using a combination of transient transfections and small interfering RNA, we demonstrate that ZNF217 represses the E-cadherin promoter. Collectively, our results implicate ZNF217 and its associated proteins in a novel pathway that may have profound effects on cancer progression.
In this study we examine the mechanisms of dynamic DNA methylation of the p15(ink4b) tumor suppressor gene. Using conventional ChIP and ChiPseq, we identify the p15(ink4b) promoter as a target for the ZNF217 oncogene, the CoREST complex, and DNMT3A. Treatment of cells with TGF-β triggers active demethylation involving loss of ZNF217/CoREST/DNMT3A and the corecruitment of SMAD2/3, CBP, and the DNA glycosylase TDG. Knockdown of TDG, or its functional homolog MBD4, prevents TGF-β-dependent demethylation of p15(ink4b). DNA immunoprecipitation of 5mC and 5hmC indicates that 5mC undergoes conversion to 5hmC prior to activation of p15(ink4b). Remarkably, overexpression of ZNF217 inhibits active demethylation and expression of the p15(ink4b) gene by preventing recruitment of SMAD2/3 and TDG. These findings suggest that active demethylation is essential for regulating a subset of TGF-β-dependent genes. Importantly, disruption of active demethylation by the ZNF217 oncogene may be a paradigm for other oncogenic signals on DNA methylation dynamics.
The ZNF217 oncoprotein is a constituent of a core transcriptional complex that includes CoREST, histone deacetylase 1/2, lysine demethylase 1, and the C-terminal binding protein 1/2. We have combined genome-wide expression profiling and chromatin immunoprecipitation with directed selection and ligation (ChIP-DSL) to identify a subset of genes directly regulated by ZNF217. Our results establish p15 ink4b as a direct target of the ZNF217 complex. Downregulation of ZNF217 in MCF-7 breast cancer cells resulted in a dramatic increase in p15 ink4b expression and coincided with increases in dimethylation of H3-K4 and, surprisingly, a decrease in K9/K14-H3 acetylation. Stimulation of HaCaT cells with transforming growth factor  (TGF-) resulted in a release of ZNF217 and a concomitant binding of SMAD2 to the proximal promoter, which preceded increases in ink4b protein expression. Furthermore, the changes in chromatin marks at the p15 ink4b promoter following TGF- stimulation were similar to those observed following ZNF217 downregulation. Collectively, these results establish the ZNF217 complex as a novel negative regulator of the p15 ink4b gene and may constitute an important link between amplification of ZNF217 and the loss of TGF- responsiveness in breast cancer.
Retinoic acid (RA) plays important roles in development, growth, and homeostasis through regulation of the nuclear receptors for RA (RARs). Herein, we identify Hypermethylated in Cancer 1 (Hic1) as an RA-inducible gene. HIC1 encodes a tumor suppressor, which is often silenced by promoter hypermethylation in cancer. Treatment of cells with an RAR agonist causes a rapid recruitment of an RAR/RXR complex consisting of TDG, the lysine acetyltransferase CBP, and TET 1/2 to the Hic1 promoter. Complex binding coincides with a transient accumulation of 5fC/5caC and concomitant upregulation of Hic1 expression, both of which are TDG dependent. Furthermore, conditional deletion of Tdg in vivo is associated with Hic1 silencing and DNA hypermethylation of the Hic1 promoter. These findings suggest that the catalytic and scaffolding activities of TDG are essential for RA-dependent gene expression and provide important insights into the mechanisms underlying targeting of TET-TDG complexes.
BackgroundThe estrogen receptor (ER) is a ligand-dependant transcription factor expressed in many breast cancers and is the target of many endocrine-based cancer therapies. Genome-wide studies have shown that the ER binds to gene-specific enhancer regions in response to β-estradiol (E2) which undergo transcription producing noncoding enhancer RNA (eRNA). While eRNAs are important for transcriptional activation of neighboring genes, the mechanism remains poorly understood.ResultsUsing ChIP-Seq we generate a global profile of thymine DNA glycosylase (TDG), an ER coactivator that plays an essential role in DNA demethylation, in response to E2 in the MCF7 breast cancer cell line. Remarkably, we found that in response to E2 TDG localized to enhancers which also recruit ERα, RNA Pol II and other coregulators and which are marked by histone modifications indicative of active enhancers. Importantly, depletion of TDG inhibits E2-mediated transcription of eRNAs and transcription of ER-target genes. Functionally, we find that TDG both sensitizes MCF7 cells to tamoxifen-mediated cytostasis and increases migration and invasion of MCF7 cells.ConclusionsTaken together we find that TDG plays a central role in mediating transcription at a subset of enhancers and governs how MCF7 cells respond to both estrogenic and anti-estrogenic compounds and may be an effective therapeutic target.Electronic supplementary materialThe online version of this article (10.1186/s13072-018-0176-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.