We consider the dynamics in infinite population evolution models with a general symmetric fitness landscape. We find shock waves, i.e., discontinuous transitions in the mean fitness, in evolution dynamics even with smooth fitness landscapes, which means that the search for the optimal evolution trajectory is more complicated. These shock waves appear in the case of positive epistasis and can be used to represent punctuated equilibria in biological evolution during long geological time scales. We find exact analytical solutions for discontinuous dynamics at the large-genome-length limit and derive optimal mutation rates for a fixed fitness landscape to send the population from the initial configuration to some final configuration in the fastest way.
Получено 20 мая 2015 г., после доработки 11 ноября 2015 г.В данной работе рассматривается одна из самых значимых моделей популяционной генетики -модель Кроу-Кимуры. В последнее десятилетие были исследованы модели с ландшафтами приспособленности малой размерности. Цель статьи состоит в анализе модели Кроу-Кимуры c многомерным ландшафтом приспособленности в рамках формализма Гамильтона-Якоби. Для случая однопикового ландшафта приспособленности выводятся точные аналитические выражения, которые подтверждаются численно.Ключевые слова: модель Кроу-Кимуры, модели эволюции, многомерный ландшафт приспособленности Abstract. -Crow-Kimura model is one of the famous models of population genetics. Last decade models with low-dimensional fitness landscape have been investigated. We consider the Crow-Kimura model of evolutionary dynamics on multi-dimensional fitness landscape with a single peak. We deduce exact solution for the dynamics, confirmed well by the numerics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.