BackgroundPrior studies describe histological and immunohistochemical differences in collagen and proteoglycan content in different meniscal zones. The aim of this study is to evaluate horizontal and vertical zonal differentiation of T1rho and T2 relaxation times of the entire meniscus from volunteers without symptom and imaging abnormality.MethodsTwenty volunteers age between 19 and 38 who have no knee-related clinical symptoms, and no history of prior knee surgeries were enrolled in this study. Two T1rho mapping (b-FFE T1rho and SPGR T1rho) and T2 mapping images were acquired with a 3.0-T MR scanner. Each meniscus was divided manually into superficial and deep zones for horizontal zonal analysis. The anterior and posterior horns of each meniscus were divided manually into white, red-white and red zones for vertical zonal analysis. Zonal differences of average relaxation times among each zone, and both inter- and intra-observer reproducibility were statistically analyzed.ResultsIn horizontal zonal analysis, T1rho relaxation times of the superficial zone tended to be higher than those of the deep zone, and this difference was statistically significant in the medial meniscal segments (84.3 ms vs 76.0 ms on b-FFE, p < 0.0001 and 96.5 ms vs 91.7 ms on SPGR, p = 0.004). In vertical zonal analysis, T1rho relaxation times of the white zone tended to be higher than those of the red zone, and this difference was statistically significant in the posterior horn of the medical meniscus (88.4 ms vs 77.1 ms on b-FFE, p < 0.001 and 104.9 ms vs 96.8 ms on SPGR, p =0.001). Likewise, T2 relaxation times of the superficial zone were significantly higher than those of the deep zone (80.4 ms vs 74.4 ms in the medial meniscus, p = 0.011). T2 relaxation times of the white zone were significantly higher than those of the red zone in the medial meniscus posterior horn (96.8 ms vs 84.3 ms, p < 0.001) and lateral meniscus anterior horn (104.6 ms vs 84.2 ms, p < 0.0001). Inter-class and intra-class correlation coefficients were excellent (>0.74) or good (0.60–0.74) in all meniscal segments on both horizontal and vertical zonal analysis, except for inter-class correlation coefficients of the lateral meniscus on SPGR. Compared with SPGR T1rho images, b-FFE T1rho images demonstrated more significant zonal differentiation with higher inter- and intra-observer reproducibility.ConclusionsThere are zonal differences in T1rho and T2 relaxation times of the normal meniscus.
Purpose : To compare data on brain tumors derived from intravoxel incoherent motion (IVIM) and arterial spin labeling (ASL) imaging with multiple parameters obtained on dynamic susceptibility contrast (DSC) perfusion MRI and to clarify the characteristics of IVIM and ASL perfusion data from the viewpoint of cerebral blood flow (CBF) analysis. Methods : ASL-CBF and IVIM techniques as well as DSC examination were performed in 24 patients with brain tumors. The IVIM data were analyzed with the two models. The relative blood flow (rBF), relative blood volume (rBV) corrected relative blood volume (crBV), mean transit time (MTT), and leakage coefficient (K2) were obtained from the DSC MRI data. Results : The ASL-CBF had the same tendency as the perfusion parameters derived from the DSC data, but the permeability from the vessels had less of an effect on the ASL-CBF. The diffusion coefficient of the fast component on IVIM contained more information on permeability than the f value. Conclusion : ASL-CBF is more suitable for the evaluation of perfusion in brain tumors than IVIM parameters. ASL-CBF and IVIM techniques should be carefully selected and the biological significance of each parameter should be understood for the correct comprehension of the pathological status of brain tumors. J. Med. Invest. 66 : 308-313, August, 2019
PurposeQuality of life (QOL) is an important clinical outcome for patients with schizophrenia, and recent studies have focused on subjective QOL. We evaluated the causal relationship between psychosocial aspect of subjective QOL, symptoms, cognitive functions, and salience network (SN) dysfunction in schizophrenia using structural equation modeling (SEM).Patients and methodsWe performed a cross-sectional study of 21 patients with symptomatically stabilized schizophrenia and 21 age-, sex-, and education level-matched healthy controls who underwent resting-state functional magnetic resonance imaging. We evaluated SN dysfunction in schizophrenia using independent component analysis (ICA). We rated participant psychopathology using the Positive and Negative Syndrome Scale (PANSS), the Brief Assessment of Cognition in Schizophrenia (BACS), and the Calgary Depression Scale for Schizophrenia (CDSS). We rated psychosocial aspect of subjective QOL using the Schizophrenia Quality of Life Scale (SQLS) psychosocial subscale. We applied SEM to examine the relationships between SN dysfunction, PANSS positive and negative scores, CDSS total scores, BACS composite scores, and SQLS psychosocial subscale scores.ResultsIn second-level analysis after group ICA, patient group had significant lower right pallidum functional connectivity (FC) within the SN than the controls did (Montreal Neurological Institute [MNI] [x y z] = [22 −2 −6]) (p = 0.027, family-wise error [FWE] corrected). In SEM, we obtained a good fit for an SEM model in which SN dysfunction causes depressed mood, which in turn determines psychosocial aspect of subjective QOL (chi-squared p = 0.9, root mean square error of approximation (RMSEA) < 0.001, comparative fit index [CFI] = 1.00, and standardized root mean square residual [SRMR]= 0.020).ConclusionWe found a continuous process by which SN dysfunction causes depressed moods that determine psychosocial aspect of subjective QOL in schizophrenia. This is the first report that offers a unified explanation of functional neuroimaging, symptoms, and outcomes. Future studies combining neuroimaging techniques and clinical assessments would elucidate schizophrenia’s pathogenesis.
Purpose : To determine the reproducibility of corrected quantitative cerebral blood flow (qCBF) through measurement of transit flow time using multi-delay three-dimensional pseudo-continuous arterial spin labeling (pCASL) in healthy men and women and to evaluate the differences in qCBF between not only men and women, but also the follicular and luteal phases of the women's menstrual cycle. Methods : The participants were 16 healthy volunteers (8 men and 8 women ; mean age, 25.3 years). Two MRI were conducted for all participants ; female participants were conducted in the follicular and luteal phases. The reproducibility of qCBF values was evaluated by the intraclass correlation coefficient (ICC) and differences between the two groups were estimated by voxel-based morphometry (VBM) analysis. Results : The qCBF values were lower in men than in women, and those in females were significantly different between the follicular and luteal phases (P < 0.05). In VBM analysis, the qCBF values of the lower frontal lobes were significantly higher in women than in men (P < 0.05). The qCBF values of the frontal pole were significantly higher in the follicular phase than in the luteal phase (P < 0.01). Conclusion : Multi-delay pCASL can reveal physiological and sex differences in cerebral perfusion.
BackgroundBlood loss from the gastrointestinal tract can be an acute and life-threatening event. For the treatment of gastrointestinal bleeding, it is important to accurately detect gastrointestinal bleeding and to localize the sites of bleeding. The purpose of this study was to retrospectively assess the capabilities of SPECT/CT in the diagnosis of gastrointestinal bleeding by a comparison with planar imaging alone as well as planar and SPECT.MethodsWe conducted a retrospective analysis of 20 patients (21 examinations) who underwent gastrointestinal bleeding scintigraphy in the past 7 years and in whom the bleeding site was identified by endoscopy or capsule endoscopy, or in whom no evidence of gastrointestinal bleeding was identified during the clinical course. Five patients (5 examinations) were diagnosed by planar imaging (planar group). Eight patients (9 examinations) were diagnosed by planar imaging and SPECT (planar + SPECT group). Seven patients (7 examinations) were diagnosed by planar imaging and SPECT/CT (planar + SPECT/CT group). We calculated the diagnostic ability of each method in detecting the presence of bleeding, as well as the ability of each method to identify the sites of bleeding. The sensitivity, specificity, and accuracy of the methods were compared.ResultsThe diagnostic ability of the three imaging methods in detecting the presence of gastrointestinal bleeding was as follows. Planar imaging showed 100% sensitivity (3/3), 100% specificity (2/2), and 100% accuracy (5/5). Planar + SPECT imaging showed 85.7% sensitivity (6/7), 100% specificity (2/2), and 88.9% accuracy (8/9). Planar + SPECT/CT imaging showed 100% sensitivity (6/6), 100% specificity (1/1), and 100% accuracy (7/7). The diagnostic ability of the three modalities in detecting the site of bleeding was as follows: planar, 33.3% (1/3); planar + SPECT, 71.4% (5/7); and planar + SPECT/CT, 100% (6/6).ConclusionsAll 3 imaging methods showed good accuracy in detecting the presence of gastrointestinal bleeding. The addition of SPECT or SPECT/CT made the anatomical position of the uptake clear and contributed to the localization of the site of gastrointestinal bleeding. Planar + SPECT/CT imaging therefore showed the highest diagnostic ability for detecting the site of gastrointestinal bleeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.