An in vitro drug-induced cardiotoxicity assay is a critical step in drug discovery for clinical use. The use of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is promising for this purpose. However, single hiPSC-CMs are limited in their ability to mimic native cardiac tissue structurally and functionally, and the generation of artificial cardiac tissue using hiPSC-CMs is an ongoing challenging. We therefore developed a new method of constructing three-dimensional (3D) artificial tissues in a short time by coating extracellular matrix (ECM) components on cell surfaces. We hypothesized that 3D cardiac tissues derived from hiPSC-CMs (3D-hiPSC-CT) could be used for an in vitro drug-induced cardiotoxicity assay. 3D-hiPSC-CT were generated by fibronectin and gelatin nanofilm coated single hiPSC-CMs. Histologically, 3D-hiPSC-CT exhibited a sarcomere structure in the myocytes and ECM proteins, such as fibronectin, collagen type I/III, and laminin. The administration of cytotoxic doxorubicin at 5.0 μM induced the release of lactate dehydrogenase, while that at 2.0 μM reduced the cell viability. E-4031, human ether-a-go-go related gene (hERG)-type potassium channel blocker, and isoproterenol induced significant changes both in the Ca transient parameters and contractile parameters in a dose-dependent manner. The 3D-hiPSC-CT exhibited doxorubicin-sensitive cytotoxicity and hERG channel blocker/isoproterenol-sensitive electrical activity in vitro, indicating its usefulness for drug-induced cardiotoxicity assays or drug screening systems for drug discovery.
Although engineered cardiac tissues (ECTs) derived from induced pluripotent stem cells (iPSCs) are promising for myocardial regenerative therapy, the appropriate ratio of cardiomyocytes to non-cardiomyocytes is not fully understood. Here, we determined whether ECT-cell content is a key determinant of its structure/function, thereby affecting ECT therapeutic potential for advanced heart failure. Scaffold-free ECTs containing different ratios (25%, 50%, 70%, or 90%) of iPSC-derived cardiomyocytes were generated by magnetic-activated cell sorting by using cardiac-specific markers. Notably, ECTs showed synchronized spontaneous beating when cardiomyocytes constituted ≥50% of total cells, with the electrical-conduction velocity increasing depending on cardiomyocyte ratio; however, ECTs containing 90% cardiomyocytes failed to form stable structures. ECTs containing 25% or 50% cardiomyocytes predominantly expressed collagen and fibronectin, whereas ECTs containing 70% cardiomyocytes predominantly expressed laminin and exhibited the highest contractile/relaxation properties. Furthermore, transplantation of ECTs containing 50% or 70% cardiomyocytes into a rat chronic myocardial infarction model led to a more profound functional recovery as compared with controls. Notably, transplanted ECTs showed electrical synchronization with the native heart under Langendorff perfusion. Collectively, these results indicate that the quantity of non-cardiomyocytes is critical in generating functional iPSC-derived ECTs as grafts for cardiac-regeneration therapy, with ECTs containing 50–70% cardiomyocytes exhibiting stable structures and increased cardiotherapeutic potential.
The present study demonstrated that NOS inhibitors prevented the development of cataracts in selenite-treated rats. The results also suggest that nitric oxide had an important role in the development of selenite-induced cataracts.
Transplantation of cardiomyocytes (CMs) derived from human induced pluripotent stem cells (hiPSC-CMs) is a promising treatment for heart failure, but residual undifferentiated hiPSCs and malignant transformed cells may lead to tumor formation. Here we describe a highly sensitive tumorigenicity assay for the detection of these cells in hiPSC-CMs. The soft agar colony formation assay and cell growth analysis were unable to detect malignantly transformed cells in hiPSC-CMs. There were no karyotypic abnormalities during hiPSCs subculture and differentiation. The hiPSC markers TRA1-60 and LIN28 showed the highest sensitivity for detecting undifferentiated hiPSCs among primary cardiomyocytes. Transplantation of hiPSC-CMs with a LIN28-positive fraction > 0.33% resulted in tumor formation in nude rats, whereas no tumors were formed when the fraction was < 0.1%. These findings suggested that combination of these in vitro and in vivo tumorigenecity assays can verify the safety of hiPSC-CMs for cell transplantation therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.